Evaluate
ab^{16}
Expand
ab^{16}
Share
Copied to clipboard
\left(ab^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply -2 and 5 to get -10.
a^{3}\left(b^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
Expand \left(ab^{2}\right)^{3}.
a^{3}b^{6}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{3}}{b^{-10}}b^{6}\left(-a\right)^{-2}
Express a^{3}\times \frac{1}{b^{-10}} as a single fraction.
\frac{a^{3}b^{6}}{b^{-10}}\left(-a\right)^{-2}
Express \frac{a^{3}}{b^{-10}}b^{6} as a single fraction.
a^{3}b^{16}\left(-a\right)^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
a^{3}b^{16}\left(-1\right)^{-2}a^{-2}
Expand \left(-a\right)^{-2}.
a^{3}b^{16}\times 1a^{-2}
Calculate -1 to the power of -2 and get 1.
a^{1}b^{16}\times 1
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
ab^{16}\times 1
Calculate a to the power of 1 and get a.
ab^{16}
For any term t, t\times 1=t and 1t=t.
\left(ab^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply -2 and 5 to get -10.
a^{3}\left(b^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
Expand \left(ab^{2}\right)^{3}.
a^{3}b^{6}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{3}}{b^{-10}}b^{6}\left(-a\right)^{-2}
Express a^{3}\times \frac{1}{b^{-10}} as a single fraction.
\frac{a^{3}b^{6}}{b^{-10}}\left(-a\right)^{-2}
Express \frac{a^{3}}{b^{-10}}b^{6} as a single fraction.
a^{3}b^{16}\left(-a\right)^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
a^{3}b^{16}\left(-1\right)^{-2}a^{-2}
Expand \left(-a\right)^{-2}.
a^{3}b^{16}\times 1a^{-2}
Calculate -1 to the power of -2 and get 1.
a^{1}b^{16}\times 1
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
ab^{16}\times 1
Calculate a to the power of 1 and get a.
ab^{16}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}