Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(ab^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply -2 and 5 to get -10.
a^{3}\left(b^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
Expand \left(ab^{2}\right)^{3}.
a^{3}b^{6}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{3}}{b^{-10}}b^{6}\left(-a\right)^{-2}
Express a^{3}\times \frac{1}{b^{-10}} as a single fraction.
\frac{a^{3}b^{6}}{b^{-10}}\left(-a\right)^{-2}
Express \frac{a^{3}}{b^{-10}}b^{6} as a single fraction.
a^{3}b^{16}\left(-a\right)^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
a^{3}b^{16}\left(-1\right)^{-2}a^{-2}
Expand \left(-a\right)^{-2}.
a^{3}b^{16}\times 1a^{-2}
Calculate -1 to the power of -2 and get 1.
a^{1}b^{16}\times 1
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
ab^{16}\times 1
Calculate a to the power of 1 and get a.
ab^{16}
For any term t, t\times 1=t and 1t=t.
\left(ab^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply -2 and 5 to get -10.
a^{3}\left(b^{2}\right)^{3}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
Expand \left(ab^{2}\right)^{3}.
a^{3}b^{6}\left(-a\right)^{-2}\times \frac{1}{b^{-10}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{a^{3}}{b^{-10}}b^{6}\left(-a\right)^{-2}
Express a^{3}\times \frac{1}{b^{-10}} as a single fraction.
\frac{a^{3}b^{6}}{b^{-10}}\left(-a\right)^{-2}
Express \frac{a^{3}}{b^{-10}}b^{6} as a single fraction.
a^{3}b^{16}\left(-a\right)^{-2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
a^{3}b^{16}\left(-1\right)^{-2}a^{-2}
Expand \left(-a\right)^{-2}.
a^{3}b^{16}\times 1a^{-2}
Calculate -1 to the power of -2 and get 1.
a^{1}b^{16}\times 1
To multiply powers of the same base, add their exponents. Add 3 and -2 to get 1.
ab^{16}\times 1
Calculate a to the power of 1 and get a.
ab^{16}
For any term t, t\times 1=t and 1t=t.