Evaluate
\frac{Q^{12}s^{132}}{r^{36}}
Expand
\frac{Q^{12}s^{132}}{r^{36}}
Share
Copied to clipboard
\left(Q^{1}r^{-3}s^{11}\right)^{12}
Use the rules of exponents to simplify the expression.
1^{12}\left(Q^{1}\right)^{12}\left(r^{-3}\right)^{12}\left(s^{11}\right)^{12}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
Q^{12}r^{-3\times 12}s^{11\times 12}
To raise a power to another power, multiply the exponents.
Q^{12}\times \frac{1}{r^{36}}s^{11\times 12}
Multiply -3 times 12.
Q^{12}\times \frac{1}{r^{36}}s^{132}
Multiply 11 times 12.
\left(Q^{1}r^{-3}s^{11}\right)^{12}
Use the rules of exponents to simplify the expression.
1^{12}\left(Q^{1}\right)^{12}\left(r^{-3}\right)^{12}\left(s^{11}\right)^{12}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
Q^{12}r^{-3\times 12}s^{11\times 12}
To raise a power to another power, multiply the exponents.
Q^{12}\times \frac{1}{r^{36}}s^{11\times 12}
Multiply -3 times 12.
Q^{12}\times \frac{1}{r^{36}}s^{132}
Multiply 11 times 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}