Solve for x
x=\frac{1}{2}=0.5
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
64x^{2}-80x+25=\left(4x-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-5\right)^{2}.
64x^{2}-80x+25=16x^{2}-24x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
64x^{2}-80x+25-16x^{2}=-24x+9
Subtract 16x^{2} from both sides.
48x^{2}-80x+25=-24x+9
Combine 64x^{2} and -16x^{2} to get 48x^{2}.
48x^{2}-80x+25+24x=9
Add 24x to both sides.
48x^{2}-56x+25=9
Combine -80x and 24x to get -56x.
48x^{2}-56x+25-9=0
Subtract 9 from both sides.
48x^{2}-56x+16=0
Subtract 9 from 25 to get 16.
6x^{2}-7x+2=0
Divide both sides by 8.
a+b=-7 ab=6\times 2=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
-1,-12 -2,-6 -3,-4
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculate the sum for each pair.
a=-4 b=-3
The solution is the pair that gives sum -7.
\left(6x^{2}-4x\right)+\left(-3x+2\right)
Rewrite 6x^{2}-7x+2 as \left(6x^{2}-4x\right)+\left(-3x+2\right).
2x\left(3x-2\right)-\left(3x-2\right)
Factor out 2x in the first and -1 in the second group.
\left(3x-2\right)\left(2x-1\right)
Factor out common term 3x-2 by using distributive property.
x=\frac{2}{3} x=\frac{1}{2}
To find equation solutions, solve 3x-2=0 and 2x-1=0.
64x^{2}-80x+25=\left(4x-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-5\right)^{2}.
64x^{2}-80x+25=16x^{2}-24x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
64x^{2}-80x+25-16x^{2}=-24x+9
Subtract 16x^{2} from both sides.
48x^{2}-80x+25=-24x+9
Combine 64x^{2} and -16x^{2} to get 48x^{2}.
48x^{2}-80x+25+24x=9
Add 24x to both sides.
48x^{2}-56x+25=9
Combine -80x and 24x to get -56x.
48x^{2}-56x+25-9=0
Subtract 9 from both sides.
48x^{2}-56x+16=0
Subtract 9 from 25 to get 16.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 48\times 16}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, -56 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 48\times 16}}{2\times 48}
Square -56.
x=\frac{-\left(-56\right)±\sqrt{3136-192\times 16}}{2\times 48}
Multiply -4 times 48.
x=\frac{-\left(-56\right)±\sqrt{3136-3072}}{2\times 48}
Multiply -192 times 16.
x=\frac{-\left(-56\right)±\sqrt{64}}{2\times 48}
Add 3136 to -3072.
x=\frac{-\left(-56\right)±8}{2\times 48}
Take the square root of 64.
x=\frac{56±8}{2\times 48}
The opposite of -56 is 56.
x=\frac{56±8}{96}
Multiply 2 times 48.
x=\frac{64}{96}
Now solve the equation x=\frac{56±8}{96} when ± is plus. Add 56 to 8.
x=\frac{2}{3}
Reduce the fraction \frac{64}{96} to lowest terms by extracting and canceling out 32.
x=\frac{48}{96}
Now solve the equation x=\frac{56±8}{96} when ± is minus. Subtract 8 from 56.
x=\frac{1}{2}
Reduce the fraction \frac{48}{96} to lowest terms by extracting and canceling out 48.
x=\frac{2}{3} x=\frac{1}{2}
The equation is now solved.
64x^{2}-80x+25=\left(4x-3\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8x-5\right)^{2}.
64x^{2}-80x+25=16x^{2}-24x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-3\right)^{2}.
64x^{2}-80x+25-16x^{2}=-24x+9
Subtract 16x^{2} from both sides.
48x^{2}-80x+25=-24x+9
Combine 64x^{2} and -16x^{2} to get 48x^{2}.
48x^{2}-80x+25+24x=9
Add 24x to both sides.
48x^{2}-56x+25=9
Combine -80x and 24x to get -56x.
48x^{2}-56x=9-25
Subtract 25 from both sides.
48x^{2}-56x=-16
Subtract 25 from 9 to get -16.
\frac{48x^{2}-56x}{48}=-\frac{16}{48}
Divide both sides by 48.
x^{2}+\left(-\frac{56}{48}\right)x=-\frac{16}{48}
Dividing by 48 undoes the multiplication by 48.
x^{2}-\frac{7}{6}x=-\frac{16}{48}
Reduce the fraction \frac{-56}{48} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{7}{6}x=-\frac{1}{3}
Reduce the fraction \frac{-16}{48} to lowest terms by extracting and canceling out 16.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{7}{12}\right)^{2}
Divide -\frac{7}{6}, the coefficient of the x term, by 2 to get -\frac{7}{12}. Then add the square of -\frac{7}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{6}x+\frac{49}{144}=-\frac{1}{3}+\frac{49}{144}
Square -\frac{7}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{144}
Add -\frac{1}{3} to \frac{49}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{12}\right)^{2}=\frac{1}{144}
Factor x^{2}-\frac{7}{6}x+\frac{49}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Take the square root of both sides of the equation.
x-\frac{7}{12}=\frac{1}{12} x-\frac{7}{12}=-\frac{1}{12}
Simplify.
x=\frac{2}{3} x=\frac{1}{2}
Add \frac{7}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}