Solve for x
x = \frac{2 \sqrt{37} + 22}{3} \approx 11.388508354
x = \frac{22 - 2 \sqrt{37}}{3} \approx 3.278158313
Graph
Share
Copied to clipboard
64-16x+x^{2}+7^{2}=\left(15-2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
64-16x+x^{2}+49=\left(15-2x\right)^{2}
Calculate 7 to the power of 2 and get 49.
113-16x+x^{2}=\left(15-2x\right)^{2}
Add 64 and 49 to get 113.
113-16x+x^{2}=225-60x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-2x\right)^{2}.
113-16x+x^{2}-225=-60x+4x^{2}
Subtract 225 from both sides.
-112-16x+x^{2}=-60x+4x^{2}
Subtract 225 from 113 to get -112.
-112-16x+x^{2}+60x=4x^{2}
Add 60x to both sides.
-112+44x+x^{2}=4x^{2}
Combine -16x and 60x to get 44x.
-112+44x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
-112+44x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+44x-112=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-44±\sqrt{44^{2}-4\left(-3\right)\left(-112\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 44 for b, and -112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-44±\sqrt{1936-4\left(-3\right)\left(-112\right)}}{2\left(-3\right)}
Square 44.
x=\frac{-44±\sqrt{1936+12\left(-112\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-44±\sqrt{1936-1344}}{2\left(-3\right)}
Multiply 12 times -112.
x=\frac{-44±\sqrt{592}}{2\left(-3\right)}
Add 1936 to -1344.
x=\frac{-44±4\sqrt{37}}{2\left(-3\right)}
Take the square root of 592.
x=\frac{-44±4\sqrt{37}}{-6}
Multiply 2 times -3.
x=\frac{4\sqrt{37}-44}{-6}
Now solve the equation x=\frac{-44±4\sqrt{37}}{-6} when ± is plus. Add -44 to 4\sqrt{37}.
x=\frac{22-2\sqrt{37}}{3}
Divide -44+4\sqrt{37} by -6.
x=\frac{-4\sqrt{37}-44}{-6}
Now solve the equation x=\frac{-44±4\sqrt{37}}{-6} when ± is minus. Subtract 4\sqrt{37} from -44.
x=\frac{2\sqrt{37}+22}{3}
Divide -44-4\sqrt{37} by -6.
x=\frac{22-2\sqrt{37}}{3} x=\frac{2\sqrt{37}+22}{3}
The equation is now solved.
64-16x+x^{2}+7^{2}=\left(15-2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-x\right)^{2}.
64-16x+x^{2}+49=\left(15-2x\right)^{2}
Calculate 7 to the power of 2 and get 49.
113-16x+x^{2}=\left(15-2x\right)^{2}
Add 64 and 49 to get 113.
113-16x+x^{2}=225-60x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(15-2x\right)^{2}.
113-16x+x^{2}+60x=225+4x^{2}
Add 60x to both sides.
113+44x+x^{2}=225+4x^{2}
Combine -16x and 60x to get 44x.
113+44x+x^{2}-4x^{2}=225
Subtract 4x^{2} from both sides.
113+44x-3x^{2}=225
Combine x^{2} and -4x^{2} to get -3x^{2}.
44x-3x^{2}=225-113
Subtract 113 from both sides.
44x-3x^{2}=112
Subtract 113 from 225 to get 112.
-3x^{2}+44x=112
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+44x}{-3}=\frac{112}{-3}
Divide both sides by -3.
x^{2}+\frac{44}{-3}x=\frac{112}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-\frac{44}{3}x=\frac{112}{-3}
Divide 44 by -3.
x^{2}-\frac{44}{3}x=-\frac{112}{3}
Divide 112 by -3.
x^{2}-\frac{44}{3}x+\left(-\frac{22}{3}\right)^{2}=-\frac{112}{3}+\left(-\frac{22}{3}\right)^{2}
Divide -\frac{44}{3}, the coefficient of the x term, by 2 to get -\frac{22}{3}. Then add the square of -\frac{22}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{44}{3}x+\frac{484}{9}=-\frac{112}{3}+\frac{484}{9}
Square -\frac{22}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{44}{3}x+\frac{484}{9}=\frac{148}{9}
Add -\frac{112}{3} to \frac{484}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{22}{3}\right)^{2}=\frac{148}{9}
Factor x^{2}-\frac{44}{3}x+\frac{484}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{22}{3}\right)^{2}}=\sqrt{\frac{148}{9}}
Take the square root of both sides of the equation.
x-\frac{22}{3}=\frac{2\sqrt{37}}{3} x-\frac{22}{3}=-\frac{2\sqrt{37}}{3}
Simplify.
x=\frac{2\sqrt{37}+22}{3} x=\frac{22-2\sqrt{37}}{3}
Add \frac{22}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}