Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

64-48x+9x^{2}=11-\left(3-2x\right)\left(4+x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-3x\right)^{2}.
64-48x+9x^{2}=11-\left(12-5x-2x^{2}\right)
Use the distributive property to multiply 3-2x by 4+x and combine like terms.
64-48x+9x^{2}=11-12+5x+2x^{2}
To find the opposite of 12-5x-2x^{2}, find the opposite of each term.
64-48x+9x^{2}=-1+5x+2x^{2}
Subtract 12 from 11 to get -1.
64-48x+9x^{2}-\left(-1\right)=5x+2x^{2}
Subtract -1 from both sides.
64-48x+9x^{2}+1=5x+2x^{2}
The opposite of -1 is 1.
64-48x+9x^{2}+1-5x=2x^{2}
Subtract 5x from both sides.
65-48x+9x^{2}-5x=2x^{2}
Add 64 and 1 to get 65.
65-53x+9x^{2}=2x^{2}
Combine -48x and -5x to get -53x.
65-53x+9x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
65-53x+7x^{2}=0
Combine 9x^{2} and -2x^{2} to get 7x^{2}.
7x^{2}-53x+65=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-53\right)±\sqrt{\left(-53\right)^{2}-4\times 7\times 65}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, -53 for b, and 65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-53\right)±\sqrt{2809-4\times 7\times 65}}{2\times 7}
Square -53.
x=\frac{-\left(-53\right)±\sqrt{2809-28\times 65}}{2\times 7}
Multiply -4 times 7.
x=\frac{-\left(-53\right)±\sqrt{2809-1820}}{2\times 7}
Multiply -28 times 65.
x=\frac{-\left(-53\right)±\sqrt{989}}{2\times 7}
Add 2809 to -1820.
x=\frac{53±\sqrt{989}}{2\times 7}
The opposite of -53 is 53.
x=\frac{53±\sqrt{989}}{14}
Multiply 2 times 7.
x=\frac{\sqrt{989}+53}{14}
Now solve the equation x=\frac{53±\sqrt{989}}{14} when ± is plus. Add 53 to \sqrt{989}.
x=\frac{53-\sqrt{989}}{14}
Now solve the equation x=\frac{53±\sqrt{989}}{14} when ± is minus. Subtract \sqrt{989} from 53.
x=\frac{\sqrt{989}+53}{14} x=\frac{53-\sqrt{989}}{14}
The equation is now solved.
64-48x+9x^{2}=11-\left(3-2x\right)\left(4+x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-3x\right)^{2}.
64-48x+9x^{2}=11-\left(12-5x-2x^{2}\right)
Use the distributive property to multiply 3-2x by 4+x and combine like terms.
64-48x+9x^{2}=11-12+5x+2x^{2}
To find the opposite of 12-5x-2x^{2}, find the opposite of each term.
64-48x+9x^{2}=-1+5x+2x^{2}
Subtract 12 from 11 to get -1.
64-48x+9x^{2}-5x=-1+2x^{2}
Subtract 5x from both sides.
64-53x+9x^{2}=-1+2x^{2}
Combine -48x and -5x to get -53x.
64-53x+9x^{2}-2x^{2}=-1
Subtract 2x^{2} from both sides.
64-53x+7x^{2}=-1
Combine 9x^{2} and -2x^{2} to get 7x^{2}.
-53x+7x^{2}=-1-64
Subtract 64 from both sides.
-53x+7x^{2}=-65
Subtract 64 from -1 to get -65.
7x^{2}-53x=-65
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{7x^{2}-53x}{7}=-\frac{65}{7}
Divide both sides by 7.
x^{2}-\frac{53}{7}x=-\frac{65}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}-\frac{53}{7}x+\left(-\frac{53}{14}\right)^{2}=-\frac{65}{7}+\left(-\frac{53}{14}\right)^{2}
Divide -\frac{53}{7}, the coefficient of the x term, by 2 to get -\frac{53}{14}. Then add the square of -\frac{53}{14} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{53}{7}x+\frac{2809}{196}=-\frac{65}{7}+\frac{2809}{196}
Square -\frac{53}{14} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{53}{7}x+\frac{2809}{196}=\frac{989}{196}
Add -\frac{65}{7} to \frac{2809}{196} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{53}{14}\right)^{2}=\frac{989}{196}
Factor x^{2}-\frac{53}{7}x+\frac{2809}{196}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{53}{14}\right)^{2}}=\sqrt{\frac{989}{196}}
Take the square root of both sides of the equation.
x-\frac{53}{14}=\frac{\sqrt{989}}{14} x-\frac{53}{14}=-\frac{\sqrt{989}}{14}
Simplify.
x=\frac{\sqrt{989}+53}{14} x=\frac{53-\sqrt{989}}{14}
Add \frac{53}{14} to both sides of the equation.