Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

7^{2}x^{2}=\frac{4}{9}+\frac{1}{3}
Expand \left(7x\right)^{2}.
49x^{2}=\frac{4}{9}+\frac{1}{3}
Calculate 7 to the power of 2 and get 49.
49x^{2}=\frac{7}{9}
Add \frac{4}{9} and \frac{1}{3} to get \frac{7}{9}.
x^{2}=\frac{\frac{7}{9}}{49}
Divide both sides by 49.
x^{2}=\frac{7}{9\times 49}
Express \frac{\frac{7}{9}}{49} as a single fraction.
x^{2}=\frac{7}{441}
Multiply 9 and 49 to get 441.
x^{2}=\frac{1}{63}
Reduce the fraction \frac{7}{441} to lowest terms by extracting and canceling out 7.
x=\frac{\sqrt{7}}{21} x=-\frac{\sqrt{7}}{21}
Take the square root of both sides of the equation.
7^{2}x^{2}=\frac{4}{9}+\frac{1}{3}
Expand \left(7x\right)^{2}.
49x^{2}=\frac{4}{9}+\frac{1}{3}
Calculate 7 to the power of 2 and get 49.
49x^{2}=\frac{7}{9}
Add \frac{4}{9} and \frac{1}{3} to get \frac{7}{9}.
49x^{2}-\frac{7}{9}=0
Subtract \frac{7}{9} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 49\left(-\frac{7}{9}\right)}}{2\times 49}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 49 for a, 0 for b, and -\frac{7}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 49\left(-\frac{7}{9}\right)}}{2\times 49}
Square 0.
x=\frac{0±\sqrt{-196\left(-\frac{7}{9}\right)}}{2\times 49}
Multiply -4 times 49.
x=\frac{0±\sqrt{\frac{1372}{9}}}{2\times 49}
Multiply -196 times -\frac{7}{9}.
x=\frac{0±\frac{14\sqrt{7}}{3}}{2\times 49}
Take the square root of \frac{1372}{9}.
x=\frac{0±\frac{14\sqrt{7}}{3}}{98}
Multiply 2 times 49.
x=\frac{\sqrt{7}}{21}
Now solve the equation x=\frac{0±\frac{14\sqrt{7}}{3}}{98} when ± is plus.
x=-\frac{\sqrt{7}}{21}
Now solve the equation x=\frac{0±\frac{14\sqrt{7}}{3}}{98} when ± is minus.
x=\frac{\sqrt{7}}{21} x=-\frac{\sqrt{7}}{21}
The equation is now solved.