Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(49+56\sqrt{3}+16\left(\sqrt{3}\right)^{2}\right)\left(7-4\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(7+4\sqrt{3}\right)^{2}.
\left(49+56\sqrt{3}+16\times 3\right)\left(7-4\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
\left(49+56\sqrt{3}+48\right)\left(7-4\sqrt{3}\right)^{2}
Multiply 16 and 3 to get 48.
\left(97+56\sqrt{3}\right)\left(7-4\sqrt{3}\right)^{2}
Add 49 and 48 to get 97.
\left(97+56\sqrt{3}\right)\left(49-56\sqrt{3}+16\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-4\sqrt{3}\right)^{2}.
\left(97+56\sqrt{3}\right)\left(49-56\sqrt{3}+16\times 3\right)
The square of \sqrt{3} is 3.
\left(97+56\sqrt{3}\right)\left(49-56\sqrt{3}+48\right)
Multiply 16 and 3 to get 48.
\left(97+56\sqrt{3}\right)\left(97-56\sqrt{3}\right)
Add 49 and 48 to get 97.
9409-\left(56\sqrt{3}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 97.
9409-56^{2}\left(\sqrt{3}\right)^{2}
Expand \left(56\sqrt{3}\right)^{2}.
9409-3136\left(\sqrt{3}\right)^{2}
Calculate 56 to the power of 2 and get 3136.
9409-3136\times 3
The square of \sqrt{3} is 3.
9409-9408
Multiply 3136 and 3 to get 9408.
1
Subtract 9408 from 9409 to get 1.