Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(7\times \frac{7}{89x\sqrt{270\times 2}}\right)^{2}
Multiply 45 and 6 to get 270.
\left(7\times \frac{7}{89x\sqrt{540}}\right)^{2}
Multiply 270 and 2 to get 540.
\left(7\times \frac{7}{89x\times 6\sqrt{15}}\right)^{2}
Factor 540=6^{2}\times 15. Rewrite the square root of the product \sqrt{6^{2}\times 15} as the product of square roots \sqrt{6^{2}}\sqrt{15}. Take the square root of 6^{2}.
\left(7\times \frac{7}{534x\sqrt{15}}\right)^{2}
Multiply 89 and 6 to get 534.
\left(7\times \frac{7\sqrt{15}}{534x\left(\sqrt{15}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{7}{534x\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\left(7\times \frac{7\sqrt{15}}{534x\times 15}\right)^{2}
The square of \sqrt{15} is 15.
\left(7\times \frac{7\sqrt{15}}{8010x}\right)^{2}
Multiply 534 and 15 to get 8010.
\left(\frac{7\times 7\sqrt{15}}{8010x}\right)^{2}
Express 7\times \frac{7\sqrt{15}}{8010x} as a single fraction.
\frac{\left(7\times 7\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
To raise \frac{7\times 7\sqrt{15}}{8010x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(49\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Multiply 7 and 7 to get 49.
\frac{49^{2}\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Expand \left(49\sqrt{15}\right)^{2}.
\frac{2401\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Calculate 49 to the power of 2 and get 2401.
\frac{2401\times 15}{\left(8010x\right)^{2}}
The square of \sqrt{15} is 15.
\frac{36015}{\left(8010x\right)^{2}}
Multiply 2401 and 15 to get 36015.
\frac{36015}{8010^{2}x^{2}}
Expand \left(8010x\right)^{2}.
\frac{36015}{64160100x^{2}}
Calculate 8010 to the power of 2 and get 64160100.
\left(7\times \frac{7}{89x\sqrt{270\times 2}}\right)^{2}
Multiply 45 and 6 to get 270.
\left(7\times \frac{7}{89x\sqrt{540}}\right)^{2}
Multiply 270 and 2 to get 540.
\left(7\times \frac{7}{89x\times 6\sqrt{15}}\right)^{2}
Factor 540=6^{2}\times 15. Rewrite the square root of the product \sqrt{6^{2}\times 15} as the product of square roots \sqrt{6^{2}}\sqrt{15}. Take the square root of 6^{2}.
\left(7\times \frac{7}{534x\sqrt{15}}\right)^{2}
Multiply 89 and 6 to get 534.
\left(7\times \frac{7\sqrt{15}}{534x\left(\sqrt{15}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{7}{534x\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\left(7\times \frac{7\sqrt{15}}{534x\times 15}\right)^{2}
The square of \sqrt{15} is 15.
\left(7\times \frac{7\sqrt{15}}{8010x}\right)^{2}
Multiply 534 and 15 to get 8010.
\left(\frac{7\times 7\sqrt{15}}{8010x}\right)^{2}
Express 7\times \frac{7\sqrt{15}}{8010x} as a single fraction.
\frac{\left(7\times 7\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
To raise \frac{7\times 7\sqrt{15}}{8010x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(49\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Multiply 7 and 7 to get 49.
\frac{49^{2}\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Expand \left(49\sqrt{15}\right)^{2}.
\frac{2401\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Calculate 49 to the power of 2 and get 2401.
\frac{2401\times 15}{\left(8010x\right)^{2}}
The square of \sqrt{15} is 15.
\frac{36015}{\left(8010x\right)^{2}}
Multiply 2401 and 15 to get 36015.
\frac{36015}{8010^{2}x^{2}}
Expand \left(8010x\right)^{2}.
\frac{36015}{64160100x^{2}}
Calculate 8010 to the power of 2 and get 64160100.