Evaluate
\frac{2401}{4277340x^{2}}
Expand
\frac{2401}{4277340x^{2}}
Graph
Share
Copied to clipboard
\left(7\times \frac{7}{89x\sqrt{270\times 2}}\right)^{2}
Multiply 45 and 6 to get 270.
\left(7\times \frac{7}{89x\sqrt{540}}\right)^{2}
Multiply 270 and 2 to get 540.
\left(7\times \frac{7}{89x\times 6\sqrt{15}}\right)^{2}
Factor 540=6^{2}\times 15. Rewrite the square root of the product \sqrt{6^{2}\times 15} as the product of square roots \sqrt{6^{2}}\sqrt{15}. Take the square root of 6^{2}.
\left(7\times \frac{7}{534x\sqrt{15}}\right)^{2}
Multiply 89 and 6 to get 534.
\left(7\times \frac{7\sqrt{15}}{534x\left(\sqrt{15}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{7}{534x\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\left(7\times \frac{7\sqrt{15}}{534x\times 15}\right)^{2}
The square of \sqrt{15} is 15.
\left(7\times \frac{7\sqrt{15}}{8010x}\right)^{2}
Multiply 534 and 15 to get 8010.
\left(\frac{7\times 7\sqrt{15}}{8010x}\right)^{2}
Express 7\times \frac{7\sqrt{15}}{8010x} as a single fraction.
\frac{\left(7\times 7\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
To raise \frac{7\times 7\sqrt{15}}{8010x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(49\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Multiply 7 and 7 to get 49.
\frac{49^{2}\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Expand \left(49\sqrt{15}\right)^{2}.
\frac{2401\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Calculate 49 to the power of 2 and get 2401.
\frac{2401\times 15}{\left(8010x\right)^{2}}
The square of \sqrt{15} is 15.
\frac{36015}{\left(8010x\right)^{2}}
Multiply 2401 and 15 to get 36015.
\frac{36015}{8010^{2}x^{2}}
Expand \left(8010x\right)^{2}.
\frac{36015}{64160100x^{2}}
Calculate 8010 to the power of 2 and get 64160100.
\left(7\times \frac{7}{89x\sqrt{270\times 2}}\right)^{2}
Multiply 45 and 6 to get 270.
\left(7\times \frac{7}{89x\sqrt{540}}\right)^{2}
Multiply 270 and 2 to get 540.
\left(7\times \frac{7}{89x\times 6\sqrt{15}}\right)^{2}
Factor 540=6^{2}\times 15. Rewrite the square root of the product \sqrt{6^{2}\times 15} as the product of square roots \sqrt{6^{2}}\sqrt{15}. Take the square root of 6^{2}.
\left(7\times \frac{7}{534x\sqrt{15}}\right)^{2}
Multiply 89 and 6 to get 534.
\left(7\times \frac{7\sqrt{15}}{534x\left(\sqrt{15}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{7}{534x\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\left(7\times \frac{7\sqrt{15}}{534x\times 15}\right)^{2}
The square of \sqrt{15} is 15.
\left(7\times \frac{7\sqrt{15}}{8010x}\right)^{2}
Multiply 534 and 15 to get 8010.
\left(\frac{7\times 7\sqrt{15}}{8010x}\right)^{2}
Express 7\times \frac{7\sqrt{15}}{8010x} as a single fraction.
\frac{\left(7\times 7\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
To raise \frac{7\times 7\sqrt{15}}{8010x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(49\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Multiply 7 and 7 to get 49.
\frac{49^{2}\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Expand \left(49\sqrt{15}\right)^{2}.
\frac{2401\left(\sqrt{15}\right)^{2}}{\left(8010x\right)^{2}}
Calculate 49 to the power of 2 and get 2401.
\frac{2401\times 15}{\left(8010x\right)^{2}}
The square of \sqrt{15} is 15.
\frac{36015}{\left(8010x\right)^{2}}
Multiply 2401 and 15 to get 36015.
\frac{36015}{8010^{2}x^{2}}
Expand \left(8010x\right)^{2}.
\frac{36015}{64160100x^{2}}
Calculate 8010 to the power of 2 and get 64160100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}