Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(6x-2\right)^{2}-4x^{2}\times 5<0
Multiply x and x to get x^{2}.
36x^{2}-24x+4-4x^{2}\times 5<0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-2\right)^{2}.
36x^{2}-24x+4-20x^{2}<0
Multiply 4 and 5 to get 20.
16x^{2}-24x+4<0
Combine 36x^{2} and -20x^{2} to get 16x^{2}.
16x^{2}-24x+4=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 16\times 4}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, -24 for b, and 4 for c in the quadratic formula.
x=\frac{24±8\sqrt{5}}{32}
Do the calculations.
x=\frac{\sqrt{5}+3}{4} x=\frac{3-\sqrt{5}}{4}
Solve the equation x=\frac{24±8\sqrt{5}}{32} when ± is plus and when ± is minus.
16\left(x-\frac{\sqrt{5}+3}{4}\right)\left(x-\frac{3-\sqrt{5}}{4}\right)<0
Rewrite the inequality by using the obtained solutions.
x-\frac{\sqrt{5}+3}{4}>0 x-\frac{3-\sqrt{5}}{4}<0
For the product to be negative, x-\frac{\sqrt{5}+3}{4} and x-\frac{3-\sqrt{5}}{4} have to be of the opposite signs. Consider the case when x-\frac{\sqrt{5}+3}{4} is positive and x-\frac{3-\sqrt{5}}{4} is negative.
x\in \emptyset
This is false for any x.
x-\frac{3-\sqrt{5}}{4}>0 x-\frac{\sqrt{5}+3}{4}<0
Consider the case when x-\frac{3-\sqrt{5}}{4} is positive and x-\frac{\sqrt{5}+3}{4} is negative.
x\in \left(\frac{3-\sqrt{5}}{4},\frac{\sqrt{5}+3}{4}\right)
The solution satisfying both inequalities is x\in \left(\frac{3-\sqrt{5}}{4},\frac{\sqrt{5}+3}{4}\right).
x\in \left(\frac{3-\sqrt{5}}{4},\frac{\sqrt{5}+3}{4}\right)
The final solution is the union of the obtained solutions.