Solve for x
x=\frac{\sqrt{10}}{6}-\frac{1}{3}\approx 0.193712943
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}\approx -0.86037961
Graph
Share
Copied to clipboard
\left(6x+2\right)^{2}-10+10=10
Add 10 to both sides of the equation.
\left(6x+2\right)^{2}=10
Subtracting 10 from itself leaves 0.
6x+2=\sqrt{10} 6x+2=-\sqrt{10}
Take the square root of both sides of the equation.
6x+2-2=\sqrt{10}-2 6x+2-2=-\sqrt{10}-2
Subtract 2 from both sides of the equation.
6x=\sqrt{10}-2 6x=-\sqrt{10}-2
Subtracting 2 from itself leaves 0.
6x=\sqrt{10}-2
Subtract 2 from \sqrt{10}.
6x=-\sqrt{10}-2
Subtract 2 from -\sqrt{10}.
\frac{6x}{6}=\frac{\sqrt{10}-2}{6} \frac{6x}{6}=\frac{-\sqrt{10}-2}{6}
Divide both sides by 6.
x=\frac{\sqrt{10}-2}{6} x=\frac{-\sqrt{10}-2}{6}
Dividing by 6 undoes the multiplication by 6.
x=\frac{\sqrt{10}}{6}-\frac{1}{3}
Divide \sqrt{10}-2 by 6.
x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
Divide -\sqrt{10}-2 by 6.
x=\frac{\sqrt{10}}{6}-\frac{1}{3} x=-\frac{\sqrt{10}}{6}-\frac{1}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}