Solve for x
x=\frac{\sqrt{3901}-65}{36}\approx -0.070611503
x=\frac{-\sqrt{3901}-65}{36}\approx -3.540499608
Graph
Share
Copied to clipboard
6^{2}x^{2}+130x+9=0
Expand \left(6x\right)^{2}.
36x^{2}+130x+9=0
Calculate 6 to the power of 2 and get 36.
x=\frac{-130±\sqrt{130^{2}-4\times 36\times 9}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, 130 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-130±\sqrt{16900-4\times 36\times 9}}{2\times 36}
Square 130.
x=\frac{-130±\sqrt{16900-144\times 9}}{2\times 36}
Multiply -4 times 36.
x=\frac{-130±\sqrt{16900-1296}}{2\times 36}
Multiply -144 times 9.
x=\frac{-130±\sqrt{15604}}{2\times 36}
Add 16900 to -1296.
x=\frac{-130±2\sqrt{3901}}{2\times 36}
Take the square root of 15604.
x=\frac{-130±2\sqrt{3901}}{72}
Multiply 2 times 36.
x=\frac{2\sqrt{3901}-130}{72}
Now solve the equation x=\frac{-130±2\sqrt{3901}}{72} when ± is plus. Add -130 to 2\sqrt{3901}.
x=\frac{\sqrt{3901}-65}{36}
Divide -130+2\sqrt{3901} by 72.
x=\frac{-2\sqrt{3901}-130}{72}
Now solve the equation x=\frac{-130±2\sqrt{3901}}{72} when ± is minus. Subtract 2\sqrt{3901} from -130.
x=\frac{-\sqrt{3901}-65}{36}
Divide -130-2\sqrt{3901} by 72.
x=\frac{\sqrt{3901}-65}{36} x=\frac{-\sqrt{3901}-65}{36}
The equation is now solved.
6^{2}x^{2}+130x+9=0
Expand \left(6x\right)^{2}.
36x^{2}+130x+9=0
Calculate 6 to the power of 2 and get 36.
36x^{2}+130x=-9
Subtract 9 from both sides. Anything subtracted from zero gives its negation.
\frac{36x^{2}+130x}{36}=-\frac{9}{36}
Divide both sides by 36.
x^{2}+\frac{130}{36}x=-\frac{9}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}+\frac{65}{18}x=-\frac{9}{36}
Reduce the fraction \frac{130}{36} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{65}{18}x=-\frac{1}{4}
Reduce the fraction \frac{-9}{36} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{65}{18}x+\left(\frac{65}{36}\right)^{2}=-\frac{1}{4}+\left(\frac{65}{36}\right)^{2}
Divide \frac{65}{18}, the coefficient of the x term, by 2 to get \frac{65}{36}. Then add the square of \frac{65}{36} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{65}{18}x+\frac{4225}{1296}=-\frac{1}{4}+\frac{4225}{1296}
Square \frac{65}{36} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{65}{18}x+\frac{4225}{1296}=\frac{3901}{1296}
Add -\frac{1}{4} to \frac{4225}{1296} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{65}{36}\right)^{2}=\frac{3901}{1296}
Factor x^{2}+\frac{65}{18}x+\frac{4225}{1296}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{65}{36}\right)^{2}}=\sqrt{\frac{3901}{1296}}
Take the square root of both sides of the equation.
x+\frac{65}{36}=\frac{\sqrt{3901}}{36} x+\frac{65}{36}=-\frac{\sqrt{3901}}{36}
Simplify.
x=\frac{\sqrt{3901}-65}{36} x=\frac{-\sqrt{3901}-65}{36}
Subtract \frac{65}{36} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}