Solve for x
x = \frac{\sqrt{5} + 3}{2} \approx 2.618033989
x=\frac{3-\sqrt{5}}{2}\approx 0.381966011
Graph
Share
Copied to clipboard
\left(6x-6\right)^{2}=36x
Use the distributive property to multiply 6 by x-1.
36x^{2}-72x+36=36x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-6\right)^{2}.
36x^{2}-72x+36-36x=0
Subtract 36x from both sides.
36x^{2}-108x+36=0
Combine -72x and -36x to get -108x.
x=\frac{-\left(-108\right)±\sqrt{\left(-108\right)^{2}-4\times 36\times 36}}{2\times 36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 36 for a, -108 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-108\right)±\sqrt{11664-4\times 36\times 36}}{2\times 36}
Square -108.
x=\frac{-\left(-108\right)±\sqrt{11664-144\times 36}}{2\times 36}
Multiply -4 times 36.
x=\frac{-\left(-108\right)±\sqrt{11664-5184}}{2\times 36}
Multiply -144 times 36.
x=\frac{-\left(-108\right)±\sqrt{6480}}{2\times 36}
Add 11664 to -5184.
x=\frac{-\left(-108\right)±36\sqrt{5}}{2\times 36}
Take the square root of 6480.
x=\frac{108±36\sqrt{5}}{2\times 36}
The opposite of -108 is 108.
x=\frac{108±36\sqrt{5}}{72}
Multiply 2 times 36.
x=\frac{36\sqrt{5}+108}{72}
Now solve the equation x=\frac{108±36\sqrt{5}}{72} when ± is plus. Add 108 to 36\sqrt{5}.
x=\frac{\sqrt{5}+3}{2}
Divide 108+36\sqrt{5} by 72.
x=\frac{108-36\sqrt{5}}{72}
Now solve the equation x=\frac{108±36\sqrt{5}}{72} when ± is minus. Subtract 36\sqrt{5} from 108.
x=\frac{3-\sqrt{5}}{2}
Divide 108-36\sqrt{5} by 72.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
The equation is now solved.
\left(6x-6\right)^{2}=36x
Use the distributive property to multiply 6 by x-1.
36x^{2}-72x+36=36x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-6\right)^{2}.
36x^{2}-72x+36-36x=0
Subtract 36x from both sides.
36x^{2}-108x+36=0
Combine -72x and -36x to get -108x.
36x^{2}-108x=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
\frac{36x^{2}-108x}{36}=-\frac{36}{36}
Divide both sides by 36.
x^{2}+\left(-\frac{108}{36}\right)x=-\frac{36}{36}
Dividing by 36 undoes the multiplication by 36.
x^{2}-3x=-\frac{36}{36}
Divide -108 by 36.
x^{2}-3x=-1
Divide -36 by 36.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-1+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-1+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{5}{4}
Add -1 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{5}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{5}}{2} x-\frac{3}{2}=-\frac{\sqrt{5}}{2}
Simplify.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}