Solve for x
x=\frac{\sqrt{129}+2}{25}\approx 0.534312668
x=\frac{2-\sqrt{129}}{25}\approx -0.374312668
Graph
Share
Copied to clipboard
5^{2}x^{2}-4x-5=0
Expand \left(5x\right)^{2}.
25x^{2}-4x-5=0
Calculate 5 to the power of 2 and get 25.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 25\left(-5\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -4 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 25\left(-5\right)}}{2\times 25}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-100\left(-5\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-4\right)±\sqrt{16+500}}{2\times 25}
Multiply -100 times -5.
x=\frac{-\left(-4\right)±\sqrt{516}}{2\times 25}
Add 16 to 500.
x=\frac{-\left(-4\right)±2\sqrt{129}}{2\times 25}
Take the square root of 516.
x=\frac{4±2\sqrt{129}}{2\times 25}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{129}}{50}
Multiply 2 times 25.
x=\frac{2\sqrt{129}+4}{50}
Now solve the equation x=\frac{4±2\sqrt{129}}{50} when ± is plus. Add 4 to 2\sqrt{129}.
x=\frac{\sqrt{129}+2}{25}
Divide 4+2\sqrt{129} by 50.
x=\frac{4-2\sqrt{129}}{50}
Now solve the equation x=\frac{4±2\sqrt{129}}{50} when ± is minus. Subtract 2\sqrt{129} from 4.
x=\frac{2-\sqrt{129}}{25}
Divide 4-2\sqrt{129} by 50.
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
The equation is now solved.
5^{2}x^{2}-4x-5=0
Expand \left(5x\right)^{2}.
25x^{2}-4x-5=0
Calculate 5 to the power of 2 and get 25.
25x^{2}-4x=5
Add 5 to both sides. Anything plus zero gives itself.
\frac{25x^{2}-4x}{25}=\frac{5}{25}
Divide both sides by 25.
x^{2}-\frac{4}{25}x=\frac{5}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{4}{25}x=\frac{1}{5}
Reduce the fraction \frac{5}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{4}{25}x+\left(-\frac{2}{25}\right)^{2}=\frac{1}{5}+\left(-\frac{2}{25}\right)^{2}
Divide -\frac{4}{25}, the coefficient of the x term, by 2 to get -\frac{2}{25}. Then add the square of -\frac{2}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{1}{5}+\frac{4}{625}
Square -\frac{2}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{129}{625}
Add \frac{1}{5} to \frac{4}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{25}\right)^{2}=\frac{129}{625}
Factor x^{2}-\frac{4}{25}x+\frac{4}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{25}\right)^{2}}=\sqrt{\frac{129}{625}}
Take the square root of both sides of the equation.
x-\frac{2}{25}=\frac{\sqrt{129}}{25} x-\frac{2}{25}=-\frac{\sqrt{129}}{25}
Simplify.
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
Add \frac{2}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}