Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5^{2}x^{2}+36=\left(13x\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}+36=\left(13x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}+36=13^{2}x^{2}
Expand \left(13x\right)^{2}.
25x^{2}+36=169x^{2}
Calculate 13 to the power of 2 and get 169.
25x^{2}+36-169x^{2}=0
Subtract 169x^{2} from both sides.
-144x^{2}+36=0
Combine 25x^{2} and -169x^{2} to get -144x^{2}.
-144x^{2}=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-36}{-144}
Divide both sides by -144.
x^{2}=\frac{1}{4}
Reduce the fraction \frac{-36}{-144} to lowest terms by extracting and canceling out -36.
x=\frac{1}{2} x=-\frac{1}{2}
Take the square root of both sides of the equation.
5^{2}x^{2}+36=\left(13x\right)^{2}
Expand \left(5x\right)^{2}.
25x^{2}+36=\left(13x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x^{2}+36=13^{2}x^{2}
Expand \left(13x\right)^{2}.
25x^{2}+36=169x^{2}
Calculate 13 to the power of 2 and get 169.
25x^{2}+36-169x^{2}=0
Subtract 169x^{2} from both sides.
-144x^{2}+36=0
Combine 25x^{2} and -169x^{2} to get -144x^{2}.
x=\frac{0±\sqrt{0^{2}-4\left(-144\right)\times 36}}{2\left(-144\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -144 for a, 0 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-144\right)\times 36}}{2\left(-144\right)}
Square 0.
x=\frac{0±\sqrt{576\times 36}}{2\left(-144\right)}
Multiply -4 times -144.
x=\frac{0±\sqrt{20736}}{2\left(-144\right)}
Multiply 576 times 36.
x=\frac{0±144}{2\left(-144\right)}
Take the square root of 20736.
x=\frac{0±144}{-288}
Multiply 2 times -144.
x=-\frac{1}{2}
Now solve the equation x=\frac{0±144}{-288} when ± is plus. Reduce the fraction \frac{144}{-288} to lowest terms by extracting and canceling out 144.
x=\frac{1}{2}
Now solve the equation x=\frac{0±144}{-288} when ± is minus. Reduce the fraction \frac{-144}{-288} to lowest terms by extracting and canceling out 144.
x=-\frac{1}{2} x=\frac{1}{2}
The equation is now solved.