Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25-10x+x^{2}-2\left(5-x\right)+41+9x^{2}-34x-6\left(5-x\right)x=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
25-10x+x^{2}-10+2x+41+9x^{2}-34x-6\left(5-x\right)x=0
Use the distributive property to multiply -2 by 5-x.
15-10x+x^{2}+2x+41+9x^{2}-34x-6\left(5-x\right)x=0
Subtract 10 from 25 to get 15.
15-8x+x^{2}+41+9x^{2}-34x-6\left(5-x\right)x=0
Combine -10x and 2x to get -8x.
56-8x+x^{2}+9x^{2}-34x-6\left(5-x\right)x=0
Add 15 and 41 to get 56.
56-8x+10x^{2}-34x-6\left(5-x\right)x=0
Combine x^{2} and 9x^{2} to get 10x^{2}.
56-42x+10x^{2}-6\left(5-x\right)x=0
Combine -8x and -34x to get -42x.
56-42x+10x^{2}+\left(-30+6x\right)x=0
Use the distributive property to multiply -6 by 5-x.
56-42x+10x^{2}-30x+6x^{2}=0
Use the distributive property to multiply -30+6x by x.
56-72x+10x^{2}+6x^{2}=0
Combine -42x and -30x to get -72x.
56-72x+16x^{2}=0
Combine 10x^{2} and 6x^{2} to get 16x^{2}.
7-9x+2x^{2}=0
Divide both sides by 8.
2x^{2}-9x+7=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-9 ab=2\times 7=14
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+7. To find a and b, set up a system to be solved.
-1,-14 -2,-7
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 14.
-1-14=-15 -2-7=-9
Calculate the sum for each pair.
a=-7 b=-2
The solution is the pair that gives sum -9.
\left(2x^{2}-7x\right)+\left(-2x+7\right)
Rewrite 2x^{2}-9x+7 as \left(2x^{2}-7x\right)+\left(-2x+7\right).
x\left(2x-7\right)-\left(2x-7\right)
Factor out x in the first and -1 in the second group.
\left(2x-7\right)\left(x-1\right)
Factor out common term 2x-7 by using distributive property.
x=\frac{7}{2} x=1
To find equation solutions, solve 2x-7=0 and x-1=0.
25-10x+x^{2}-2\left(5-x\right)+41+9x^{2}-34x-6\left(5-x\right)x=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
25-10x+x^{2}-10+2x+41+9x^{2}-34x-6\left(5-x\right)x=0
Use the distributive property to multiply -2 by 5-x.
15-10x+x^{2}+2x+41+9x^{2}-34x-6\left(5-x\right)x=0
Subtract 10 from 25 to get 15.
15-8x+x^{2}+41+9x^{2}-34x-6\left(5-x\right)x=0
Combine -10x and 2x to get -8x.
56-8x+x^{2}+9x^{2}-34x-6\left(5-x\right)x=0
Add 15 and 41 to get 56.
56-8x+10x^{2}-34x-6\left(5-x\right)x=0
Combine x^{2} and 9x^{2} to get 10x^{2}.
56-42x+10x^{2}-6\left(5-x\right)x=0
Combine -8x and -34x to get -42x.
56-42x+10x^{2}+\left(-30+6x\right)x=0
Use the distributive property to multiply -6 by 5-x.
56-42x+10x^{2}-30x+6x^{2}=0
Use the distributive property to multiply -30+6x by x.
56-72x+10x^{2}+6x^{2}=0
Combine -42x and -30x to get -72x.
56-72x+16x^{2}=0
Combine 10x^{2} and 6x^{2} to get 16x^{2}.
16x^{2}-72x+56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 16\times 56}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -72 for b, and 56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 16\times 56}}{2\times 16}
Square -72.
x=\frac{-\left(-72\right)±\sqrt{5184-64\times 56}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-72\right)±\sqrt{5184-3584}}{2\times 16}
Multiply -64 times 56.
x=\frac{-\left(-72\right)±\sqrt{1600}}{2\times 16}
Add 5184 to -3584.
x=\frac{-\left(-72\right)±40}{2\times 16}
Take the square root of 1600.
x=\frac{72±40}{2\times 16}
The opposite of -72 is 72.
x=\frac{72±40}{32}
Multiply 2 times 16.
x=\frac{112}{32}
Now solve the equation x=\frac{72±40}{32} when ± is plus. Add 72 to 40.
x=\frac{7}{2}
Reduce the fraction \frac{112}{32} to lowest terms by extracting and canceling out 16.
x=\frac{32}{32}
Now solve the equation x=\frac{72±40}{32} when ± is minus. Subtract 40 from 72.
x=1
Divide 32 by 32.
x=\frac{7}{2} x=1
The equation is now solved.
25-10x+x^{2}-2\left(5-x\right)+41+9x^{2}-34x-6\left(5-x\right)x=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
25-10x+x^{2}-10+2x+41+9x^{2}-34x-6\left(5-x\right)x=0
Use the distributive property to multiply -2 by 5-x.
15-10x+x^{2}+2x+41+9x^{2}-34x-6\left(5-x\right)x=0
Subtract 10 from 25 to get 15.
15-8x+x^{2}+41+9x^{2}-34x-6\left(5-x\right)x=0
Combine -10x and 2x to get -8x.
56-8x+x^{2}+9x^{2}-34x-6\left(5-x\right)x=0
Add 15 and 41 to get 56.
56-8x+10x^{2}-34x-6\left(5-x\right)x=0
Combine x^{2} and 9x^{2} to get 10x^{2}.
56-42x+10x^{2}-6\left(5-x\right)x=0
Combine -8x and -34x to get -42x.
56-42x+10x^{2}+\left(-30+6x\right)x=0
Use the distributive property to multiply -6 by 5-x.
56-42x+10x^{2}-30x+6x^{2}=0
Use the distributive property to multiply -30+6x by x.
56-72x+10x^{2}+6x^{2}=0
Combine -42x and -30x to get -72x.
56-72x+16x^{2}=0
Combine 10x^{2} and 6x^{2} to get 16x^{2}.
-72x+16x^{2}=-56
Subtract 56 from both sides. Anything subtracted from zero gives its negation.
16x^{2}-72x=-56
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}-72x}{16}=-\frac{56}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{72}{16}\right)x=-\frac{56}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{9}{2}x=-\frac{56}{16}
Reduce the fraction \frac{-72}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{9}{2}x=-\frac{7}{2}
Reduce the fraction \frac{-56}{16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-\frac{7}{2}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-\frac{7}{2}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{25}{16}
Add -\frac{7}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{9}{2}x+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x-\frac{9}{4}=\frac{5}{4} x-\frac{9}{4}=-\frac{5}{4}
Simplify.
x=\frac{7}{2} x=1
Add \frac{9}{4} to both sides of the equation.