Evaluate
25-54\sqrt{2}\approx -51.367532368
Expand
25-54\sqrt{2}
Share
Copied to clipboard
25\left(\sqrt{2}\right)^{2}-30\sqrt{2}+9-\left(3\sqrt{2}+4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{2}-3\right)^{2}.
25\times 2-30\sqrt{2}+9-\left(3\sqrt{2}+4\right)^{2}
The square of \sqrt{2} is 2.
50-30\sqrt{2}+9-\left(3\sqrt{2}+4\right)^{2}
Multiply 25 and 2 to get 50.
59-30\sqrt{2}-\left(3\sqrt{2}+4\right)^{2}
Add 50 and 9 to get 59.
59-30\sqrt{2}-\left(9\left(\sqrt{2}\right)^{2}+24\sqrt{2}+16\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{2}+4\right)^{2}.
59-30\sqrt{2}-\left(9\times 2+24\sqrt{2}+16\right)
The square of \sqrt{2} is 2.
59-30\sqrt{2}-\left(18+24\sqrt{2}+16\right)
Multiply 9 and 2 to get 18.
59-30\sqrt{2}-\left(34+24\sqrt{2}\right)
Add 18 and 16 to get 34.
59-30\sqrt{2}-34-24\sqrt{2}
To find the opposite of 34+24\sqrt{2}, find the opposite of each term.
25-30\sqrt{2}-24\sqrt{2}
Subtract 34 from 59 to get 25.
25-54\sqrt{2}
Combine -30\sqrt{2} and -24\sqrt{2} to get -54\sqrt{2}.
25\left(\sqrt{2}\right)^{2}-30\sqrt{2}+9-\left(3\sqrt{2}+4\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5\sqrt{2}-3\right)^{2}.
25\times 2-30\sqrt{2}+9-\left(3\sqrt{2}+4\right)^{2}
The square of \sqrt{2} is 2.
50-30\sqrt{2}+9-\left(3\sqrt{2}+4\right)^{2}
Multiply 25 and 2 to get 50.
59-30\sqrt{2}-\left(3\sqrt{2}+4\right)^{2}
Add 50 and 9 to get 59.
59-30\sqrt{2}-\left(9\left(\sqrt{2}\right)^{2}+24\sqrt{2}+16\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{2}+4\right)^{2}.
59-30\sqrt{2}-\left(9\times 2+24\sqrt{2}+16\right)
The square of \sqrt{2} is 2.
59-30\sqrt{2}-\left(18+24\sqrt{2}+16\right)
Multiply 9 and 2 to get 18.
59-30\sqrt{2}-\left(34+24\sqrt{2}\right)
Add 18 and 16 to get 34.
59-30\sqrt{2}-34-24\sqrt{2}
To find the opposite of 34+24\sqrt{2}, find the opposite of each term.
25-30\sqrt{2}-24\sqrt{2}
Subtract 34 from 59 to get 25.
25-54\sqrt{2}
Combine -30\sqrt{2} and -24\sqrt{2} to get -54\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}