Solve for x
x = \frac{160}{103} = 1\frac{57}{103} \approx 1.553398058
x=0
Graph
Share
Copied to clipboard
16x^{2}-40x+25=\left(5-3x\right)^{2}+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-5\right)^{2}.
16x^{2}-40x+25=25-30x+9x^{2}+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-3x\right)^{2}.
16x^{2}-40x+25=25-30x+\frac{153}{16}x^{2}
Combine 9x^{2} and \frac{9}{16}x^{2} to get \frac{153}{16}x^{2}.
16x^{2}-40x+25-25=-30x+\frac{153}{16}x^{2}
Subtract 25 from both sides.
16x^{2}-40x=-30x+\frac{153}{16}x^{2}
Subtract 25 from 25 to get 0.
16x^{2}-40x+30x=\frac{153}{16}x^{2}
Add 30x to both sides.
16x^{2}-10x=\frac{153}{16}x^{2}
Combine -40x and 30x to get -10x.
16x^{2}-10x-\frac{153}{16}x^{2}=0
Subtract \frac{153}{16}x^{2} from both sides.
\frac{103}{16}x^{2}-10x=0
Combine 16x^{2} and -\frac{153}{16}x^{2} to get \frac{103}{16}x^{2}.
x\left(\frac{103}{16}x-10\right)=0
Factor out x.
x=0 x=\frac{160}{103}
To find equation solutions, solve x=0 and \frac{103x}{16}-10=0.
16x^{2}-40x+25=\left(5-3x\right)^{2}+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-5\right)^{2}.
16x^{2}-40x+25=25-30x+9x^{2}+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-3x\right)^{2}.
16x^{2}-40x+25=25-30x+\frac{153}{16}x^{2}
Combine 9x^{2} and \frac{9}{16}x^{2} to get \frac{153}{16}x^{2}.
16x^{2}-40x+25-25=-30x+\frac{153}{16}x^{2}
Subtract 25 from both sides.
16x^{2}-40x=-30x+\frac{153}{16}x^{2}
Subtract 25 from 25 to get 0.
16x^{2}-40x+30x=\frac{153}{16}x^{2}
Add 30x to both sides.
16x^{2}-10x=\frac{153}{16}x^{2}
Combine -40x and 30x to get -10x.
16x^{2}-10x-\frac{153}{16}x^{2}=0
Subtract \frac{153}{16}x^{2} from both sides.
\frac{103}{16}x^{2}-10x=0
Combine 16x^{2} and -\frac{153}{16}x^{2} to get \frac{103}{16}x^{2}.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times \frac{103}{16}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{103}{16} for a, -10 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±10}{2\times \frac{103}{16}}
Take the square root of \left(-10\right)^{2}.
x=\frac{10±10}{2\times \frac{103}{16}}
The opposite of -10 is 10.
x=\frac{10±10}{\frac{103}{8}}
Multiply 2 times \frac{103}{16}.
x=\frac{20}{\frac{103}{8}}
Now solve the equation x=\frac{10±10}{\frac{103}{8}} when ± is plus. Add 10 to 10.
x=\frac{160}{103}
Divide 20 by \frac{103}{8} by multiplying 20 by the reciprocal of \frac{103}{8}.
x=\frac{0}{\frac{103}{8}}
Now solve the equation x=\frac{10±10}{\frac{103}{8}} when ± is minus. Subtract 10 from 10.
x=0
Divide 0 by \frac{103}{8} by multiplying 0 by the reciprocal of \frac{103}{8}.
x=\frac{160}{103} x=0
The equation is now solved.
16x^{2}-40x+25=\left(5-3x\right)^{2}+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-5\right)^{2}.
16x^{2}-40x+25=25-30x+9x^{2}+\frac{9}{16}x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-3x\right)^{2}.
16x^{2}-40x+25=25-30x+\frac{153}{16}x^{2}
Combine 9x^{2} and \frac{9}{16}x^{2} to get \frac{153}{16}x^{2}.
16x^{2}-40x+25+30x=25+\frac{153}{16}x^{2}
Add 30x to both sides.
16x^{2}-10x+25=25+\frac{153}{16}x^{2}
Combine -40x and 30x to get -10x.
16x^{2}-10x+25-\frac{153}{16}x^{2}=25
Subtract \frac{153}{16}x^{2} from both sides.
\frac{103}{16}x^{2}-10x+25=25
Combine 16x^{2} and -\frac{153}{16}x^{2} to get \frac{103}{16}x^{2}.
\frac{103}{16}x^{2}-10x=25-25
Subtract 25 from both sides.
\frac{103}{16}x^{2}-10x=0
Subtract 25 from 25 to get 0.
\frac{\frac{103}{16}x^{2}-10x}{\frac{103}{16}}=\frac{0}{\frac{103}{16}}
Divide both sides of the equation by \frac{103}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{10}{\frac{103}{16}}\right)x=\frac{0}{\frac{103}{16}}
Dividing by \frac{103}{16} undoes the multiplication by \frac{103}{16}.
x^{2}-\frac{160}{103}x=\frac{0}{\frac{103}{16}}
Divide -10 by \frac{103}{16} by multiplying -10 by the reciprocal of \frac{103}{16}.
x^{2}-\frac{160}{103}x=0
Divide 0 by \frac{103}{16} by multiplying 0 by the reciprocal of \frac{103}{16}.
x^{2}-\frac{160}{103}x+\left(-\frac{80}{103}\right)^{2}=\left(-\frac{80}{103}\right)^{2}
Divide -\frac{160}{103}, the coefficient of the x term, by 2 to get -\frac{80}{103}. Then add the square of -\frac{80}{103} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{160}{103}x+\frac{6400}{10609}=\frac{6400}{10609}
Square -\frac{80}{103} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{80}{103}\right)^{2}=\frac{6400}{10609}
Factor x^{2}-\frac{160}{103}x+\frac{6400}{10609}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{80}{103}\right)^{2}}=\sqrt{\frac{6400}{10609}}
Take the square root of both sides of the equation.
x-\frac{80}{103}=\frac{80}{103} x-\frac{80}{103}=-\frac{80}{103}
Simplify.
x=\frac{160}{103} x=0
Add \frac{80}{103} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}