Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4^{2}x^{2}-4x-5=10
Expand \left(4x\right)^{2}.
16x^{2}-4x-5=10
Calculate 4 to the power of 2 and get 16.
16x^{2}-4x-5-10=0
Subtract 10 from both sides.
16x^{2}-4x-15=0
Subtract 10 from -5 to get -15.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 16\left(-15\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -4 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 16\left(-15\right)}}{2\times 16}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-64\left(-15\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-4\right)±\sqrt{16+960}}{2\times 16}
Multiply -64 times -15.
x=\frac{-\left(-4\right)±\sqrt{976}}{2\times 16}
Add 16 to 960.
x=\frac{-\left(-4\right)±4\sqrt{61}}{2\times 16}
Take the square root of 976.
x=\frac{4±4\sqrt{61}}{2\times 16}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{61}}{32}
Multiply 2 times 16.
x=\frac{4\sqrt{61}+4}{32}
Now solve the equation x=\frac{4±4\sqrt{61}}{32} when ± is plus. Add 4 to 4\sqrt{61}.
x=\frac{\sqrt{61}+1}{8}
Divide 4+4\sqrt{61} by 32.
x=\frac{4-4\sqrt{61}}{32}
Now solve the equation x=\frac{4±4\sqrt{61}}{32} when ± is minus. Subtract 4\sqrt{61} from 4.
x=\frac{1-\sqrt{61}}{8}
Divide 4-4\sqrt{61} by 32.
x=\frac{\sqrt{61}+1}{8} x=\frac{1-\sqrt{61}}{8}
The equation is now solved.
4^{2}x^{2}-4x-5=10
Expand \left(4x\right)^{2}.
16x^{2}-4x-5=10
Calculate 4 to the power of 2 and get 16.
16x^{2}-4x=10+5
Add 5 to both sides.
16x^{2}-4x=15
Add 10 and 5 to get 15.
\frac{16x^{2}-4x}{16}=\frac{15}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{4}{16}\right)x=\frac{15}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{1}{4}x=\frac{15}{16}
Reduce the fraction \frac{-4}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{15}{16}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{15}{16}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{61}{64}
Add \frac{15}{16} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=\frac{61}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{61}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{\sqrt{61}}{8} x-\frac{1}{8}=-\frac{\sqrt{61}}{8}
Simplify.
x=\frac{\sqrt{61}+1}{8} x=\frac{1-\sqrt{61}}{8}
Add \frac{1}{8} to both sides of the equation.