Solve for x (complex solution)
x=\frac{1+\sqrt{95}i}{16}\approx 0.0625+0.609174647i
x=\frac{-\sqrt{95}i+1}{16}\approx 0.0625-0.609174647i
Graph
Share
Copied to clipboard
4^{2}x^{2}-2x+6=0
Expand \left(4x\right)^{2}.
16x^{2}-2x+6=0
Calculate 4 to the power of 2 and get 16.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 16\times 6}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -2 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 16\times 6}}{2\times 16}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-64\times 6}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-2\right)±\sqrt{4-384}}{2\times 16}
Multiply -64 times 6.
x=\frac{-\left(-2\right)±\sqrt{-380}}{2\times 16}
Add 4 to -384.
x=\frac{-\left(-2\right)±2\sqrt{95}i}{2\times 16}
Take the square root of -380.
x=\frac{2±2\sqrt{95}i}{2\times 16}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{95}i}{32}
Multiply 2 times 16.
x=\frac{2+2\sqrt{95}i}{32}
Now solve the equation x=\frac{2±2\sqrt{95}i}{32} when ± is plus. Add 2 to 2i\sqrt{95}.
x=\frac{1+\sqrt{95}i}{16}
Divide 2+2i\sqrt{95} by 32.
x=\frac{-2\sqrt{95}i+2}{32}
Now solve the equation x=\frac{2±2\sqrt{95}i}{32} when ± is minus. Subtract 2i\sqrt{95} from 2.
x=\frac{-\sqrt{95}i+1}{16}
Divide 2-2i\sqrt{95} by 32.
x=\frac{1+\sqrt{95}i}{16} x=\frac{-\sqrt{95}i+1}{16}
The equation is now solved.
4^{2}x^{2}-2x+6=0
Expand \left(4x\right)^{2}.
16x^{2}-2x+6=0
Calculate 4 to the power of 2 and get 16.
16x^{2}-2x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{16x^{2}-2x}{16}=-\frac{6}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{2}{16}\right)x=-\frac{6}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{1}{8}x=-\frac{6}{16}
Reduce the fraction \frac{-2}{16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{8}x=-\frac{3}{8}
Reduce the fraction \frac{-6}{16} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{8}x+\left(-\frac{1}{16}\right)^{2}=-\frac{3}{8}+\left(-\frac{1}{16}\right)^{2}
Divide -\frac{1}{8}, the coefficient of the x term, by 2 to get -\frac{1}{16}. Then add the square of -\frac{1}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{8}x+\frac{1}{256}=-\frac{3}{8}+\frac{1}{256}
Square -\frac{1}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{8}x+\frac{1}{256}=-\frac{95}{256}
Add -\frac{3}{8} to \frac{1}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{16}\right)^{2}=-\frac{95}{256}
Factor x^{2}-\frac{1}{8}x+\frac{1}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{16}\right)^{2}}=\sqrt{-\frac{95}{256}}
Take the square root of both sides of the equation.
x-\frac{1}{16}=\frac{\sqrt{95}i}{16} x-\frac{1}{16}=-\frac{\sqrt{95}i}{16}
Simplify.
x=\frac{1+\sqrt{95}i}{16} x=\frac{-\sqrt{95}i+1}{16}
Add \frac{1}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}