Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4^{2}x^{2}+4x+4=0
Expand \left(4x\right)^{2}.
16x^{2}+4x+4=0
Calculate 4 to the power of 2 and get 16.
x=\frac{-4±\sqrt{4^{2}-4\times 16\times 4}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 16\times 4}}{2\times 16}
Square 4.
x=\frac{-4±\sqrt{16-64\times 4}}{2\times 16}
Multiply -4 times 16.
x=\frac{-4±\sqrt{16-256}}{2\times 16}
Multiply -64 times 4.
x=\frac{-4±\sqrt{-240}}{2\times 16}
Add 16 to -256.
x=\frac{-4±4\sqrt{15}i}{2\times 16}
Take the square root of -240.
x=\frac{-4±4\sqrt{15}i}{32}
Multiply 2 times 16.
x=\frac{-4+4\sqrt{15}i}{32}
Now solve the equation x=\frac{-4±4\sqrt{15}i}{32} when ± is plus. Add -4 to 4i\sqrt{15}.
x=\frac{-1+\sqrt{15}i}{8}
Divide -4+4i\sqrt{15} by 32.
x=\frac{-4\sqrt{15}i-4}{32}
Now solve the equation x=\frac{-4±4\sqrt{15}i}{32} when ± is minus. Subtract 4i\sqrt{15} from -4.
x=\frac{-\sqrt{15}i-1}{8}
Divide -4-4i\sqrt{15} by 32.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
The equation is now solved.
4^{2}x^{2}+4x+4=0
Expand \left(4x\right)^{2}.
16x^{2}+4x+4=0
Calculate 4 to the power of 2 and get 16.
16x^{2}+4x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{16x^{2}+4x}{16}=-\frac{4}{16}
Divide both sides by 16.
x^{2}+\frac{4}{16}x=-\frac{4}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{1}{4}x=-\frac{4}{16}
Reduce the fraction \frac{4}{16} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{4}x=-\frac{1}{4}
Reduce the fraction \frac{-4}{16} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=-\frac{1}{4}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{1}{4}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{15}{64}
Add -\frac{1}{4} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=-\frac{15}{64}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{15}{64}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{15}i}{8} x+\frac{1}{8}=-\frac{\sqrt{15}i}{8}
Simplify.
x=\frac{-1+\sqrt{15}i}{8} x=\frac{-\sqrt{15}i-1}{8}
Subtract \frac{1}{8} from both sides of the equation.