Solve for y
y = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Graph
Share
Copied to clipboard
16+8y+y^{2}-\left(1-y\right)^{2}=1^{2}+5y
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+y\right)^{2}.
16+8y+y^{2}-\left(1-2y+y^{2}\right)=1^{2}+5y
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-y\right)^{2}.
16+8y+y^{2}-1+2y-y^{2}=1^{2}+5y
To find the opposite of 1-2y+y^{2}, find the opposite of each term.
15+8y+y^{2}+2y-y^{2}=1^{2}+5y
Subtract 1 from 16 to get 15.
15+10y+y^{2}-y^{2}=1^{2}+5y
Combine 8y and 2y to get 10y.
15+10y=1^{2}+5y
Combine y^{2} and -y^{2} to get 0.
15+10y=1+5y
Calculate 1 to the power of 2 and get 1.
15+10y-5y=1
Subtract 5y from both sides.
15+5y=1
Combine 10y and -5y to get 5y.
5y=1-15
Subtract 15 from both sides.
5y=-14
Subtract 15 from 1 to get -14.
y=\frac{-14}{5}
Divide both sides by 5.
y=-\frac{14}{5}
Fraction \frac{-14}{5} can be rewritten as -\frac{14}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}