Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16+8x+x^{2}+\left(3+x\right)^{2}=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
16+8x+x^{2}+9+6x+x^{2}=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+x\right)^{2}.
25+8x+x^{2}+6x+x^{2}=49
Add 16 and 9 to get 25.
25+14x+x^{2}+x^{2}=49
Combine 8x and 6x to get 14x.
25+14x+2x^{2}=49
Combine x^{2} and x^{2} to get 2x^{2}.
25+14x+2x^{2}-49=0
Subtract 49 from both sides.
-24+14x+2x^{2}=0
Subtract 49 from 25 to get -24.
2x^{2}+14x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-24\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 14 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 2\left(-24\right)}}{2\times 2}
Square 14.
x=\frac{-14±\sqrt{196-8\left(-24\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-14±\sqrt{196+192}}{2\times 2}
Multiply -8 times -24.
x=\frac{-14±\sqrt{388}}{2\times 2}
Add 196 to 192.
x=\frac{-14±2\sqrt{97}}{2\times 2}
Take the square root of 388.
x=\frac{-14±2\sqrt{97}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{97}-14}{4}
Now solve the equation x=\frac{-14±2\sqrt{97}}{4} when ± is plus. Add -14 to 2\sqrt{97}.
x=\frac{\sqrt{97}-7}{2}
Divide -14+2\sqrt{97} by 4.
x=\frac{-2\sqrt{97}-14}{4}
Now solve the equation x=\frac{-14±2\sqrt{97}}{4} when ± is minus. Subtract 2\sqrt{97} from -14.
x=\frac{-\sqrt{97}-7}{2}
Divide -14-2\sqrt{97} by 4.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
The equation is now solved.
16+8x+x^{2}+\left(3+x\right)^{2}=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+x\right)^{2}.
16+8x+x^{2}+9+6x+x^{2}=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+x\right)^{2}.
25+8x+x^{2}+6x+x^{2}=49
Add 16 and 9 to get 25.
25+14x+x^{2}+x^{2}=49
Combine 8x and 6x to get 14x.
25+14x+2x^{2}=49
Combine x^{2} and x^{2} to get 2x^{2}.
14x+2x^{2}=49-25
Subtract 25 from both sides.
14x+2x^{2}=24
Subtract 25 from 49 to get 24.
2x^{2}+14x=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+14x}{2}=\frac{24}{2}
Divide both sides by 2.
x^{2}+\frac{14}{2}x=\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+7x=\frac{24}{2}
Divide 14 by 2.
x^{2}+7x=12
Divide 24 by 2.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=12+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=12+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{97}{4}
Add 12 to \frac{49}{4}.
\left(x+\frac{7}{2}\right)^{2}=\frac{97}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{\sqrt{97}}{2} x+\frac{7}{2}=-\frac{\sqrt{97}}{2}
Simplify.
x=\frac{\sqrt{97}-7}{2} x=\frac{-\sqrt{97}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.