Evaluate
64b^{2}a^{14}
Expand
64b^{2}a^{14}
Share
Copied to clipboard
4^{4}\left(a^{2}\right)^{4}b^{4}\times \left(\frac{-a^{3}}{2b}\right)^{2}
Expand \left(4a^{2}b\right)^{4}.
4^{4}a^{8}b^{4}\times \left(\frac{-a^{3}}{2b}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
256a^{8}b^{4}\times \left(\frac{-a^{3}}{2b}\right)^{2}
Calculate 4 to the power of 4 and get 256.
256a^{8}b^{4}\times \frac{\left(-a^{3}\right)^{2}}{\left(2b\right)^{2}}
To raise \frac{-a^{3}}{2b} to a power, raise both numerator and denominator to the power and then divide.
\frac{256\left(-a^{3}\right)^{2}}{\left(2b\right)^{2}}a^{8}b^{4}
Express 256\times \frac{\left(-a^{3}\right)^{2}}{\left(2b\right)^{2}} as a single fraction.
\frac{256\left(a^{3}\right)^{2}}{\left(2b\right)^{2}}a^{8}b^{4}
Calculate -a^{3} to the power of 2 and get \left(a^{3}\right)^{2}.
\frac{256\left(a^{3}\right)^{2}}{2^{2}b^{2}}a^{8}b^{4}
Expand \left(2b\right)^{2}.
\frac{256\left(a^{3}\right)^{2}}{4b^{2}}a^{8}b^{4}
Calculate 2 to the power of 2 and get 4.
\frac{64\left(a^{3}\right)^{2}}{b^{2}}a^{8}b^{4}
Cancel out 4 in both numerator and denominator.
\frac{64a^{6}}{b^{2}}a^{8}b^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{64a^{6}a^{8}}{b^{2}}b^{4}
Express \frac{64a^{6}}{b^{2}}a^{8} as a single fraction.
\frac{64a^{6}a^{8}b^{4}}{b^{2}}
Express \frac{64a^{6}a^{8}}{b^{2}}b^{4} as a single fraction.
64b^{2}a^{6}a^{8}
Cancel out b^{2} in both numerator and denominator.
64b^{2}a^{14}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
4^{4}\left(a^{2}\right)^{4}b^{4}\times \left(\frac{-a^{3}}{2b}\right)^{2}
Expand \left(4a^{2}b\right)^{4}.
4^{4}a^{8}b^{4}\times \left(\frac{-a^{3}}{2b}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 4 to get 8.
256a^{8}b^{4}\times \left(\frac{-a^{3}}{2b}\right)^{2}
Calculate 4 to the power of 4 and get 256.
256a^{8}b^{4}\times \frac{\left(-a^{3}\right)^{2}}{\left(2b\right)^{2}}
To raise \frac{-a^{3}}{2b} to a power, raise both numerator and denominator to the power and then divide.
\frac{256\left(-a^{3}\right)^{2}}{\left(2b\right)^{2}}a^{8}b^{4}
Express 256\times \frac{\left(-a^{3}\right)^{2}}{\left(2b\right)^{2}} as a single fraction.
\frac{256\left(a^{3}\right)^{2}}{\left(2b\right)^{2}}a^{8}b^{4}
Calculate -a^{3} to the power of 2 and get \left(a^{3}\right)^{2}.
\frac{256\left(a^{3}\right)^{2}}{2^{2}b^{2}}a^{8}b^{4}
Expand \left(2b\right)^{2}.
\frac{256\left(a^{3}\right)^{2}}{4b^{2}}a^{8}b^{4}
Calculate 2 to the power of 2 and get 4.
\frac{64\left(a^{3}\right)^{2}}{b^{2}}a^{8}b^{4}
Cancel out 4 in both numerator and denominator.
\frac{64a^{6}}{b^{2}}a^{8}b^{4}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{64a^{6}a^{8}}{b^{2}}b^{4}
Express \frac{64a^{6}}{b^{2}}a^{8} as a single fraction.
\frac{64a^{6}a^{8}b^{4}}{b^{2}}
Express \frac{64a^{6}a^{8}}{b^{2}}b^{4} as a single fraction.
64b^{2}a^{6}a^{8}
Cancel out b^{2} in both numerator and denominator.
64b^{2}a^{14}
To multiply powers of the same base, add their exponents. Add 6 and 8 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}