Evaluate
\frac{532}{3}-16\sqrt{5}\approx 141.556245693
Factor
\frac{4 {(133 - 12 \sqrt{5})}}{3} = 141.5562456933367
Share
Copied to clipboard
4^{2}\left(\sqrt{5}\right)^{2}-\frac{4}{3}\times 2+64-4\left(4\sqrt{5}-9\right)
Expand \left(4\sqrt{5}\right)^{2}.
16\left(\sqrt{5}\right)^{2}-\frac{4}{3}\times 2+64-4\left(4\sqrt{5}-9\right)
Calculate 4 to the power of 2 and get 16.
16\times 5-\frac{4}{3}\times 2+64-4\left(4\sqrt{5}-9\right)
The square of \sqrt{5} is 5.
80-\frac{4}{3}\times 2+64-4\left(4\sqrt{5}-9\right)
Multiply 16 and 5 to get 80.
80-\frac{8}{3}+64-4\left(4\sqrt{5}-9\right)
Multiply \frac{4}{3} and 2 to get \frac{8}{3}.
\frac{232}{3}+64-4\left(4\sqrt{5}-9\right)
Subtract \frac{8}{3} from 80 to get \frac{232}{3}.
\frac{424}{3}-4\left(4\sqrt{5}-9\right)
Add \frac{232}{3} and 64 to get \frac{424}{3}.
\frac{424}{3}-16\sqrt{5}+36
Use the distributive property to multiply -4 by 4\sqrt{5}-9.
\frac{532}{3}-16\sqrt{5}
Add \frac{424}{3} and 36 to get \frac{532}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}