Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=0\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
9x^{2}y^{2}+42xy+49-\left(3xy-7\right)^{2}=8xy
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3xy+7\right)^{2}.
9x^{2}y^{2}+42xy+49-\left(9x^{2}y^{2}-42xy+49\right)=8xy
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3xy-7\right)^{2}.
9x^{2}y^{2}+42xy+49-9x^{2}y^{2}+42xy-49=8xy
To find the opposite of 9x^{2}y^{2}-42xy+49, find the opposite of each term.
42xy+49+42xy-49=8xy
Combine 9x^{2}y^{2} and -9x^{2}y^{2} to get 0.
84xy+49-49=8xy
Combine 42xy and 42xy to get 84xy.
84xy=8xy
Subtract 49 from 49 to get 0.
84xy-8xy=0
Subtract 8xy from both sides.
76xy=0
Combine 84xy and -8xy to get 76xy.
76yx=0
The equation is in standard form.
x=0
Divide 0 by 76y.
9x^{2}y^{2}+42xy+49-\left(3xy-7\right)^{2}=8xy
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3xy+7\right)^{2}.
9x^{2}y^{2}+42xy+49-\left(9x^{2}y^{2}-42xy+49\right)=8xy
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3xy-7\right)^{2}.
9x^{2}y^{2}+42xy+49-9x^{2}y^{2}+42xy-49=8xy
To find the opposite of 9x^{2}y^{2}-42xy+49, find the opposite of each term.
42xy+49+42xy-49=8xy
Combine 9x^{2}y^{2} and -9x^{2}y^{2} to get 0.
84xy+49-49=8xy
Combine 42xy and 42xy to get 84xy.
84xy=8xy
Subtract 49 from 49 to get 0.
84xy-8xy=0
Subtract 8xy from both sides.
76xy=0
Combine 84xy and -8xy to get 76xy.
y=0
Divide 0 by 76x.
9x^{2}y^{2}+42xy+49-\left(3xy-7\right)^{2}=8xy
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3xy+7\right)^{2}.
9x^{2}y^{2}+42xy+49-\left(9x^{2}y^{2}-42xy+49\right)=8xy
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3xy-7\right)^{2}.
9x^{2}y^{2}+42xy+49-9x^{2}y^{2}+42xy-49=8xy
To find the opposite of 9x^{2}y^{2}-42xy+49, find the opposite of each term.
42xy+49+42xy-49=8xy
Combine 9x^{2}y^{2} and -9x^{2}y^{2} to get 0.
84xy+49-49=8xy
Combine 42xy and 42xy to get 84xy.
84xy=8xy
Subtract 49 from 49 to get 0.
84xy-8xy=0
Subtract 8xy from both sides.
76xy=0
Combine 84xy and -8xy to get 76xy.
76yx=0
The equation is in standard form.
x=0
Divide 0 by 76y.
9x^{2}y^{2}+42xy+49-\left(3xy-7\right)^{2}=8xy
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3xy+7\right)^{2}.
9x^{2}y^{2}+42xy+49-\left(9x^{2}y^{2}-42xy+49\right)=8xy
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3xy-7\right)^{2}.
9x^{2}y^{2}+42xy+49-9x^{2}y^{2}+42xy-49=8xy
To find the opposite of 9x^{2}y^{2}-42xy+49, find the opposite of each term.
42xy+49+42xy-49=8xy
Combine 9x^{2}y^{2} and -9x^{2}y^{2} to get 0.
84xy+49-49=8xy
Combine 42xy and 42xy to get 84xy.
84xy=8xy
Subtract 49 from 49 to get 0.
84xy-8xy=0
Subtract 8xy from both sides.
76xy=0
Combine 84xy and -8xy to get 76xy.
y=0
Divide 0 by 76x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}