Solve for x
x=4
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
Graph
Share
Copied to clipboard
9x^{2}-48x+64=3x^{2}-8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-8\right)^{2}.
9x^{2}-48x+64-3x^{2}=-8x
Subtract 3x^{2} from both sides.
6x^{2}-48x+64=-8x
Combine 9x^{2} and -3x^{2} to get 6x^{2}.
6x^{2}-48x+64+8x=0
Add 8x to both sides.
6x^{2}-40x+64=0
Combine -48x and 8x to get -40x.
3x^{2}-20x+32=0
Divide both sides by 2.
a+b=-20 ab=3\times 32=96
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+32. To find a and b, set up a system to be solved.
-1,-96 -2,-48 -3,-32 -4,-24 -6,-16 -8,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 96.
-1-96=-97 -2-48=-50 -3-32=-35 -4-24=-28 -6-16=-22 -8-12=-20
Calculate the sum for each pair.
a=-12 b=-8
The solution is the pair that gives sum -20.
\left(3x^{2}-12x\right)+\left(-8x+32\right)
Rewrite 3x^{2}-20x+32 as \left(3x^{2}-12x\right)+\left(-8x+32\right).
3x\left(x-4\right)-8\left(x-4\right)
Factor out 3x in the first and -8 in the second group.
\left(x-4\right)\left(3x-8\right)
Factor out common term x-4 by using distributive property.
x=4 x=\frac{8}{3}
To find equation solutions, solve x-4=0 and 3x-8=0.
9x^{2}-48x+64=3x^{2}-8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-8\right)^{2}.
9x^{2}-48x+64-3x^{2}=-8x
Subtract 3x^{2} from both sides.
6x^{2}-48x+64=-8x
Combine 9x^{2} and -3x^{2} to get 6x^{2}.
6x^{2}-48x+64+8x=0
Add 8x to both sides.
6x^{2}-40x+64=0
Combine -48x and 8x to get -40x.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 6\times 64}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -40 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 6\times 64}}{2\times 6}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-24\times 64}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-40\right)±\sqrt{1600-1536}}{2\times 6}
Multiply -24 times 64.
x=\frac{-\left(-40\right)±\sqrt{64}}{2\times 6}
Add 1600 to -1536.
x=\frac{-\left(-40\right)±8}{2\times 6}
Take the square root of 64.
x=\frac{40±8}{2\times 6}
The opposite of -40 is 40.
x=\frac{40±8}{12}
Multiply 2 times 6.
x=\frac{48}{12}
Now solve the equation x=\frac{40±8}{12} when ± is plus. Add 40 to 8.
x=4
Divide 48 by 12.
x=\frac{32}{12}
Now solve the equation x=\frac{40±8}{12} when ± is minus. Subtract 8 from 40.
x=\frac{8}{3}
Reduce the fraction \frac{32}{12} to lowest terms by extracting and canceling out 4.
x=4 x=\frac{8}{3}
The equation is now solved.
9x^{2}-48x+64=3x^{2}-8x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-8\right)^{2}.
9x^{2}-48x+64-3x^{2}=-8x
Subtract 3x^{2} from both sides.
6x^{2}-48x+64=-8x
Combine 9x^{2} and -3x^{2} to get 6x^{2}.
6x^{2}-48x+64+8x=0
Add 8x to both sides.
6x^{2}-40x+64=0
Combine -48x and 8x to get -40x.
6x^{2}-40x=-64
Subtract 64 from both sides. Anything subtracted from zero gives its negation.
\frac{6x^{2}-40x}{6}=-\frac{64}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{40}{6}\right)x=-\frac{64}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{20}{3}x=-\frac{64}{6}
Reduce the fraction \frac{-40}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{20}{3}x=-\frac{32}{3}
Reduce the fraction \frac{-64}{6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{20}{3}x+\left(-\frac{10}{3}\right)^{2}=-\frac{32}{3}+\left(-\frac{10}{3}\right)^{2}
Divide -\frac{20}{3}, the coefficient of the x term, by 2 to get -\frac{10}{3}. Then add the square of -\frac{10}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{20}{3}x+\frac{100}{9}=-\frac{32}{3}+\frac{100}{9}
Square -\frac{10}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{20}{3}x+\frac{100}{9}=\frac{4}{9}
Add -\frac{32}{3} to \frac{100}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{10}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}-\frac{20}{3}x+\frac{100}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{10}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x-\frac{10}{3}=\frac{2}{3} x-\frac{10}{3}=-\frac{2}{3}
Simplify.
x=4 x=\frac{8}{3}
Add \frac{10}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}