Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-48x+64+\left(-8+3x\right)\left(4x+2\right)=48
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-8\right)^{2}.
9x^{2}-48x+64-26x-16+12x^{2}=48
Use the distributive property to multiply -8+3x by 4x+2 and combine like terms.
9x^{2}-74x+64-16+12x^{2}=48
Combine -48x and -26x to get -74x.
9x^{2}-74x+48+12x^{2}=48
Subtract 16 from 64 to get 48.
21x^{2}-74x+48=48
Combine 9x^{2} and 12x^{2} to get 21x^{2}.
21x^{2}-74x+48-48=0
Subtract 48 from both sides.
21x^{2}-74x=0
Subtract 48 from 48 to get 0.
x\left(21x-74\right)=0
Factor out x.
x=0 x=\frac{74}{21}
To find equation solutions, solve x=0 and 21x-74=0.
9x^{2}-48x+64+\left(-8+3x\right)\left(4x+2\right)=48
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-8\right)^{2}.
9x^{2}-48x+64-26x-16+12x^{2}=48
Use the distributive property to multiply -8+3x by 4x+2 and combine like terms.
9x^{2}-74x+64-16+12x^{2}=48
Combine -48x and -26x to get -74x.
9x^{2}-74x+48+12x^{2}=48
Subtract 16 from 64 to get 48.
21x^{2}-74x+48=48
Combine 9x^{2} and 12x^{2} to get 21x^{2}.
21x^{2}-74x+48-48=0
Subtract 48 from both sides.
21x^{2}-74x=0
Subtract 48 from 48 to get 0.
x=\frac{-\left(-74\right)±\sqrt{\left(-74\right)^{2}}}{2\times 21}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 21 for a, -74 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-74\right)±74}{2\times 21}
Take the square root of \left(-74\right)^{2}.
x=\frac{74±74}{2\times 21}
The opposite of -74 is 74.
x=\frac{74±74}{42}
Multiply 2 times 21.
x=\frac{148}{42}
Now solve the equation x=\frac{74±74}{42} when ± is plus. Add 74 to 74.
x=\frac{74}{21}
Reduce the fraction \frac{148}{42} to lowest terms by extracting and canceling out 2.
x=\frac{0}{42}
Now solve the equation x=\frac{74±74}{42} when ± is minus. Subtract 74 from 74.
x=0
Divide 0 by 42.
x=\frac{74}{21} x=0
The equation is now solved.
9x^{2}-48x+64+\left(-8+3x\right)\left(4x+2\right)=48
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-8\right)^{2}.
9x^{2}-48x+64-26x-16+12x^{2}=48
Use the distributive property to multiply -8+3x by 4x+2 and combine like terms.
9x^{2}-74x+64-16+12x^{2}=48
Combine -48x and -26x to get -74x.
9x^{2}-74x+48+12x^{2}=48
Subtract 16 from 64 to get 48.
21x^{2}-74x+48=48
Combine 9x^{2} and 12x^{2} to get 21x^{2}.
21x^{2}-74x=48-48
Subtract 48 from both sides.
21x^{2}-74x=0
Subtract 48 from 48 to get 0.
\frac{21x^{2}-74x}{21}=\frac{0}{21}
Divide both sides by 21.
x^{2}-\frac{74}{21}x=\frac{0}{21}
Dividing by 21 undoes the multiplication by 21.
x^{2}-\frac{74}{21}x=0
Divide 0 by 21.
x^{2}-\frac{74}{21}x+\left(-\frac{37}{21}\right)^{2}=\left(-\frac{37}{21}\right)^{2}
Divide -\frac{74}{21}, the coefficient of the x term, by 2 to get -\frac{37}{21}. Then add the square of -\frac{37}{21} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{74}{21}x+\frac{1369}{441}=\frac{1369}{441}
Square -\frac{37}{21} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{37}{21}\right)^{2}=\frac{1369}{441}
Factor x^{2}-\frac{74}{21}x+\frac{1369}{441}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{21}\right)^{2}}=\sqrt{\frac{1369}{441}}
Take the square root of both sides of the equation.
x-\frac{37}{21}=\frac{37}{21} x-\frac{37}{21}=-\frac{37}{21}
Simplify.
x=\frac{74}{21} x=0
Add \frac{37}{21} to both sides of the equation.