Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)=-x^{2}-\left(-\left(3x+1\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)=-x^{2}-\left(-3x-1\right)
To find the opposite of 3x+1, find the opposite of each term.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)=-x^{2}+3x+1
To find the opposite of -3x-1, find the opposite of each term.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)+x^{2}=3x+1
Add x^{2} to both sides.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)+x^{2}-3x=1
Subtract 3x from both sides.
9x^{2}-42x+49+\left(-10x-5\right)\left(x-2\right)+x^{2}-3x=1
Use the distributive property to multiply -5 by 2x+1.
9x^{2}-42x+49-10x^{2}+15x+10+x^{2}-3x=1
Use the distributive property to multiply -10x-5 by x-2 and combine like terms.
-x^{2}-42x+49+15x+10+x^{2}-3x=1
Combine 9x^{2} and -10x^{2} to get -x^{2}.
-x^{2}-27x+49+10+x^{2}-3x=1
Combine -42x and 15x to get -27x.
-x^{2}-27x+59+x^{2}-3x=1
Add 49 and 10 to get 59.
-27x+59-3x=1
Combine -x^{2} and x^{2} to get 0.
-30x+59=1
Combine -27x and -3x to get -30x.
-30x=1-59
Subtract 59 from both sides.
-30x=-58
Subtract 59 from 1 to get -58.
x=\frac{-58}{-30}
Divide both sides by -30.
x=\frac{29}{15}
Reduce the fraction \frac{-58}{-30} to lowest terms by extracting and canceling out -2.