Solve for x
x = \frac{29}{15} = 1\frac{14}{15} \approx 1.933333333
Graph
Share
Copied to clipboard
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)=-x^{2}-\left(-\left(3x+1\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)=-x^{2}-\left(-3x-1\right)
To find the opposite of 3x+1, find the opposite of each term.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)=-x^{2}+3x+1
To find the opposite of -3x-1, find the opposite of each term.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)+x^{2}=3x+1
Add x^{2} to both sides.
9x^{2}-42x+49-5\left(2x+1\right)\left(x-2\right)+x^{2}-3x=1
Subtract 3x from both sides.
9x^{2}-42x+49+\left(-10x-5\right)\left(x-2\right)+x^{2}-3x=1
Use the distributive property to multiply -5 by 2x+1.
9x^{2}-42x+49-10x^{2}+15x+10+x^{2}-3x=1
Use the distributive property to multiply -10x-5 by x-2 and combine like terms.
-x^{2}-42x+49+15x+10+x^{2}-3x=1
Combine 9x^{2} and -10x^{2} to get -x^{2}.
-x^{2}-27x+49+10+x^{2}-3x=1
Combine -42x and 15x to get -27x.
-x^{2}-27x+59+x^{2}-3x=1
Add 49 and 10 to get 59.
-27x+59-3x=1
Combine -x^{2} and x^{2} to get 0.
-30x+59=1
Combine -27x and -3x to get -30x.
-30x=1-59
Subtract 59 from both sides.
-30x=-58
Subtract 59 from 1 to get -58.
x=\frac{-58}{-30}
Divide both sides by -30.
x=\frac{29}{15}
Reduce the fraction \frac{-58}{-30} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}