Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-42x+49-4\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49-4\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-42x+49-4x^{2}-8x-4=0
Use the distributive property to multiply -4 by x^{2}+2x+1.
5x^{2}-42x+49-8x-4=0
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-50x+49-4=0
Combine -42x and -8x to get -50x.
5x^{2}-50x+45=0
Subtract 4 from 49 to get 45.
x^{2}-10x+9=0
Divide both sides by 5.
a+b=-10 ab=1\times 9=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-9 -3,-3
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 9.
-1-9=-10 -3-3=-6
Calculate the sum for each pair.
a=-9 b=-1
The solution is the pair that gives sum -10.
\left(x^{2}-9x\right)+\left(-x+9\right)
Rewrite x^{2}-10x+9 as \left(x^{2}-9x\right)+\left(-x+9\right).
x\left(x-9\right)-\left(x-9\right)
Factor out x in the first and -1 in the second group.
\left(x-9\right)\left(x-1\right)
Factor out common term x-9 by using distributive property.
x=9 x=1
To find equation solutions, solve x-9=0 and x-1=0.
9x^{2}-42x+49-4\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49-4\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-42x+49-4x^{2}-8x-4=0
Use the distributive property to multiply -4 by x^{2}+2x+1.
5x^{2}-42x+49-8x-4=0
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-50x+49-4=0
Combine -42x and -8x to get -50x.
5x^{2}-50x+45=0
Subtract 4 from 49 to get 45.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 5\times 45}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -50 for b, and 45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 5\times 45}}{2\times 5}
Square -50.
x=\frac{-\left(-50\right)±\sqrt{2500-20\times 45}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-50\right)±\sqrt{2500-900}}{2\times 5}
Multiply -20 times 45.
x=\frac{-\left(-50\right)±\sqrt{1600}}{2\times 5}
Add 2500 to -900.
x=\frac{-\left(-50\right)±40}{2\times 5}
Take the square root of 1600.
x=\frac{50±40}{2\times 5}
The opposite of -50 is 50.
x=\frac{50±40}{10}
Multiply 2 times 5.
x=\frac{90}{10}
Now solve the equation x=\frac{50±40}{10} when ± is plus. Add 50 to 40.
x=9
Divide 90 by 10.
x=\frac{10}{10}
Now solve the equation x=\frac{50±40}{10} when ± is minus. Subtract 40 from 50.
x=1
Divide 10 by 10.
x=9 x=1
The equation is now solved.
9x^{2}-42x+49-4\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-7\right)^{2}.
9x^{2}-42x+49-4\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-42x+49-4x^{2}-8x-4=0
Use the distributive property to multiply -4 by x^{2}+2x+1.
5x^{2}-42x+49-8x-4=0
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}-50x+49-4=0
Combine -42x and -8x to get -50x.
5x^{2}-50x+45=0
Subtract 4 from 49 to get 45.
5x^{2}-50x=-45
Subtract 45 from both sides. Anything subtracted from zero gives its negation.
\frac{5x^{2}-50x}{5}=-\frac{45}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{50}{5}\right)x=-\frac{45}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-10x=-\frac{45}{5}
Divide -50 by 5.
x^{2}-10x=-9
Divide -45 by 5.
x^{2}-10x+\left(-5\right)^{2}=-9+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-9+25
Square -5.
x^{2}-10x+25=16
Add -9 to 25.
\left(x-5\right)^{2}=16
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-5=4 x-5=-4
Simplify.
x=9 x=1
Add 5 to both sides of the equation.