Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-30x+25-\left(3x-5\right)=4+4\left(9x^{2}-25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+25-3x+5=4+4\left(9x^{2}-25\right)
To find the opposite of 3x-5, find the opposite of each term.
9x^{2}-33x+25+5=4+4\left(9x^{2}-25\right)
Combine -30x and -3x to get -33x.
9x^{2}-33x+30=4+4\left(9x^{2}-25\right)
Add 25 and 5 to get 30.
9x^{2}-33x+30=4+36x^{2}-100
Use the distributive property to multiply 4 by 9x^{2}-25.
9x^{2}-33x+30=-96+36x^{2}
Subtract 100 from 4 to get -96.
9x^{2}-33x+30-\left(-96\right)=36x^{2}
Subtract -96 from both sides.
9x^{2}-33x+30+96=36x^{2}
The opposite of -96 is 96.
9x^{2}-33x+30+96-36x^{2}=0
Subtract 36x^{2} from both sides.
9x^{2}-33x+126-36x^{2}=0
Add 30 and 96 to get 126.
-27x^{2}-33x+126=0
Combine 9x^{2} and -36x^{2} to get -27x^{2}.
x=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\left(-27\right)\times 126}}{2\left(-27\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -27 for a, -33 for b, and 126 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-33\right)±\sqrt{1089-4\left(-27\right)\times 126}}{2\left(-27\right)}
Square -33.
x=\frac{-\left(-33\right)±\sqrt{1089+108\times 126}}{2\left(-27\right)}
Multiply -4 times -27.
x=\frac{-\left(-33\right)±\sqrt{1089+13608}}{2\left(-27\right)}
Multiply 108 times 126.
x=\frac{-\left(-33\right)±\sqrt{14697}}{2\left(-27\right)}
Add 1089 to 13608.
x=\frac{-\left(-33\right)±3\sqrt{1633}}{2\left(-27\right)}
Take the square root of 14697.
x=\frac{33±3\sqrt{1633}}{2\left(-27\right)}
The opposite of -33 is 33.
x=\frac{33±3\sqrt{1633}}{-54}
Multiply 2 times -27.
x=\frac{3\sqrt{1633}+33}{-54}
Now solve the equation x=\frac{33±3\sqrt{1633}}{-54} when ± is plus. Add 33 to 3\sqrt{1633}.
x=\frac{-\sqrt{1633}-11}{18}
Divide 33+3\sqrt{1633} by -54.
x=\frac{33-3\sqrt{1633}}{-54}
Now solve the equation x=\frac{33±3\sqrt{1633}}{-54} when ± is minus. Subtract 3\sqrt{1633} from 33.
x=\frac{\sqrt{1633}-11}{18}
Divide 33-3\sqrt{1633} by -54.
x=\frac{-\sqrt{1633}-11}{18} x=\frac{\sqrt{1633}-11}{18}
The equation is now solved.
9x^{2}-30x+25-\left(3x-5\right)=4+4\left(9x^{2}-25\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+25-3x+5=4+4\left(9x^{2}-25\right)
To find the opposite of 3x-5, find the opposite of each term.
9x^{2}-33x+25+5=4+4\left(9x^{2}-25\right)
Combine -30x and -3x to get -33x.
9x^{2}-33x+30=4+4\left(9x^{2}-25\right)
Add 25 and 5 to get 30.
9x^{2}-33x+30=4+36x^{2}-100
Use the distributive property to multiply 4 by 9x^{2}-25.
9x^{2}-33x+30=-96+36x^{2}
Subtract 100 from 4 to get -96.
9x^{2}-33x+30-36x^{2}=-96
Subtract 36x^{2} from both sides.
-27x^{2}-33x+30=-96
Combine 9x^{2} and -36x^{2} to get -27x^{2}.
-27x^{2}-33x=-96-30
Subtract 30 from both sides.
-27x^{2}-33x=-126
Subtract 30 from -96 to get -126.
\frac{-27x^{2}-33x}{-27}=-\frac{126}{-27}
Divide both sides by -27.
x^{2}+\left(-\frac{33}{-27}\right)x=-\frac{126}{-27}
Dividing by -27 undoes the multiplication by -27.
x^{2}+\frac{11}{9}x=-\frac{126}{-27}
Reduce the fraction \frac{-33}{-27} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{11}{9}x=\frac{14}{3}
Reduce the fraction \frac{-126}{-27} to lowest terms by extracting and canceling out 9.
x^{2}+\frac{11}{9}x+\left(\frac{11}{18}\right)^{2}=\frac{14}{3}+\left(\frac{11}{18}\right)^{2}
Divide \frac{11}{9}, the coefficient of the x term, by 2 to get \frac{11}{18}. Then add the square of \frac{11}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{14}{3}+\frac{121}{324}
Square \frac{11}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{9}x+\frac{121}{324}=\frac{1633}{324}
Add \frac{14}{3} to \frac{121}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{18}\right)^{2}=\frac{1633}{324}
Factor x^{2}+\frac{11}{9}x+\frac{121}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{18}\right)^{2}}=\sqrt{\frac{1633}{324}}
Take the square root of both sides of the equation.
x+\frac{11}{18}=\frac{\sqrt{1633}}{18} x+\frac{11}{18}=-\frac{\sqrt{1633}}{18}
Simplify.
x=\frac{\sqrt{1633}-11}{18} x=\frac{-\sqrt{1633}-11}{18}
Subtract \frac{11}{18} from both sides of the equation.