Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-30x+25-\left(4x-2\right)^{2}=4\left(9-10x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+25-\left(16x^{2}-16x+4\right)=4\left(9-10x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-2\right)^{2}.
9x^{2}-30x+25-16x^{2}+16x-4=4\left(9-10x\right)
To find the opposite of 16x^{2}-16x+4, find the opposite of each term.
-7x^{2}-30x+25+16x-4=4\left(9-10x\right)
Combine 9x^{2} and -16x^{2} to get -7x^{2}.
-7x^{2}-14x+25-4=4\left(9-10x\right)
Combine -30x and 16x to get -14x.
-7x^{2}-14x+21=4\left(9-10x\right)
Subtract 4 from 25 to get 21.
-7x^{2}-14x+21=36-40x
Use the distributive property to multiply 4 by 9-10x.
-7x^{2}-14x+21-36=-40x
Subtract 36 from both sides.
-7x^{2}-14x-15=-40x
Subtract 36 from 21 to get -15.
-7x^{2}-14x-15+40x=0
Add 40x to both sides.
-7x^{2}+26x-15=0
Combine -14x and 40x to get 26x.
a+b=26 ab=-7\left(-15\right)=105
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -7x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,105 3,35 5,21 7,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 105.
1+105=106 3+35=38 5+21=26 7+15=22
Calculate the sum for each pair.
a=21 b=5
The solution is the pair that gives sum 26.
\left(-7x^{2}+21x\right)+\left(5x-15\right)
Rewrite -7x^{2}+26x-15 as \left(-7x^{2}+21x\right)+\left(5x-15\right).
7x\left(-x+3\right)-5\left(-x+3\right)
Factor out 7x in the first and -5 in the second group.
\left(-x+3\right)\left(7x-5\right)
Factor out common term -x+3 by using distributive property.
x=3 x=\frac{5}{7}
To find equation solutions, solve -x+3=0 and 7x-5=0.
9x^{2}-30x+25-\left(4x-2\right)^{2}=4\left(9-10x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+25-\left(16x^{2}-16x+4\right)=4\left(9-10x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-2\right)^{2}.
9x^{2}-30x+25-16x^{2}+16x-4=4\left(9-10x\right)
To find the opposite of 16x^{2}-16x+4, find the opposite of each term.
-7x^{2}-30x+25+16x-4=4\left(9-10x\right)
Combine 9x^{2} and -16x^{2} to get -7x^{2}.
-7x^{2}-14x+25-4=4\left(9-10x\right)
Combine -30x and 16x to get -14x.
-7x^{2}-14x+21=4\left(9-10x\right)
Subtract 4 from 25 to get 21.
-7x^{2}-14x+21=36-40x
Use the distributive property to multiply 4 by 9-10x.
-7x^{2}-14x+21-36=-40x
Subtract 36 from both sides.
-7x^{2}-14x-15=-40x
Subtract 36 from 21 to get -15.
-7x^{2}-14x-15+40x=0
Add 40x to both sides.
-7x^{2}+26x-15=0
Combine -14x and 40x to get 26x.
x=\frac{-26±\sqrt{26^{2}-4\left(-7\right)\left(-15\right)}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 26 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-26±\sqrt{676-4\left(-7\right)\left(-15\right)}}{2\left(-7\right)}
Square 26.
x=\frac{-26±\sqrt{676+28\left(-15\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-26±\sqrt{676-420}}{2\left(-7\right)}
Multiply 28 times -15.
x=\frac{-26±\sqrt{256}}{2\left(-7\right)}
Add 676 to -420.
x=\frac{-26±16}{2\left(-7\right)}
Take the square root of 256.
x=\frac{-26±16}{-14}
Multiply 2 times -7.
x=-\frac{10}{-14}
Now solve the equation x=\frac{-26±16}{-14} when ± is plus. Add -26 to 16.
x=\frac{5}{7}
Reduce the fraction \frac{-10}{-14} to lowest terms by extracting and canceling out 2.
x=-\frac{42}{-14}
Now solve the equation x=\frac{-26±16}{-14} when ± is minus. Subtract 16 from -26.
x=3
Divide -42 by -14.
x=\frac{5}{7} x=3
The equation is now solved.
9x^{2}-30x+25-\left(4x-2\right)^{2}=4\left(9-10x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x^{2}-30x+25-\left(16x^{2}-16x+4\right)=4\left(9-10x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-2\right)^{2}.
9x^{2}-30x+25-16x^{2}+16x-4=4\left(9-10x\right)
To find the opposite of 16x^{2}-16x+4, find the opposite of each term.
-7x^{2}-30x+25+16x-4=4\left(9-10x\right)
Combine 9x^{2} and -16x^{2} to get -7x^{2}.
-7x^{2}-14x+25-4=4\left(9-10x\right)
Combine -30x and 16x to get -14x.
-7x^{2}-14x+21=4\left(9-10x\right)
Subtract 4 from 25 to get 21.
-7x^{2}-14x+21=36-40x
Use the distributive property to multiply 4 by 9-10x.
-7x^{2}-14x+21+40x=36
Add 40x to both sides.
-7x^{2}+26x+21=36
Combine -14x and 40x to get 26x.
-7x^{2}+26x=36-21
Subtract 21 from both sides.
-7x^{2}+26x=15
Subtract 21 from 36 to get 15.
\frac{-7x^{2}+26x}{-7}=\frac{15}{-7}
Divide both sides by -7.
x^{2}+\frac{26}{-7}x=\frac{15}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{26}{7}x=\frac{15}{-7}
Divide 26 by -7.
x^{2}-\frac{26}{7}x=-\frac{15}{7}
Divide 15 by -7.
x^{2}-\frac{26}{7}x+\left(-\frac{13}{7}\right)^{2}=-\frac{15}{7}+\left(-\frac{13}{7}\right)^{2}
Divide -\frac{26}{7}, the coefficient of the x term, by 2 to get -\frac{13}{7}. Then add the square of -\frac{13}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{26}{7}x+\frac{169}{49}=-\frac{15}{7}+\frac{169}{49}
Square -\frac{13}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{26}{7}x+\frac{169}{49}=\frac{64}{49}
Add -\frac{15}{7} to \frac{169}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{7}\right)^{2}=\frac{64}{49}
Factor x^{2}-\frac{26}{7}x+\frac{169}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{7}\right)^{2}}=\sqrt{\frac{64}{49}}
Take the square root of both sides of the equation.
x-\frac{13}{7}=\frac{8}{7} x-\frac{13}{7}=-\frac{8}{7}
Simplify.
x=3 x=\frac{5}{7}
Add \frac{13}{7} to both sides of the equation.