Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(3x+2\right)\left(x+3\right)=x+4
Calculate 3x+2 to the power of 1 and get 3x+2.
3x^{2}+11x+6=x+4
Use the distributive property to multiply 3x+2 by x+3 and combine like terms.
3x^{2}+11x+6-x=4
Subtract x from both sides.
3x^{2}+10x+6=4
Combine 11x and -x to get 10x.
3x^{2}+10x+6-4=0
Subtract 4 from both sides.
3x^{2}+10x+2=0
Subtract 4 from 6 to get 2.
x=\frac{-10±\sqrt{10^{2}-4\times 3\times 2}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 10 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 3\times 2}}{2\times 3}
Square 10.
x=\frac{-10±\sqrt{100-12\times 2}}{2\times 3}
Multiply -4 times 3.
x=\frac{-10±\sqrt{100-24}}{2\times 3}
Multiply -12 times 2.
x=\frac{-10±\sqrt{76}}{2\times 3}
Add 100 to -24.
x=\frac{-10±2\sqrt{19}}{2\times 3}
Take the square root of 76.
x=\frac{-10±2\sqrt{19}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{19}-10}{6}
Now solve the equation x=\frac{-10±2\sqrt{19}}{6} when ± is plus. Add -10 to 2\sqrt{19}.
x=\frac{\sqrt{19}-5}{3}
Divide -10+2\sqrt{19} by 6.
x=\frac{-2\sqrt{19}-10}{6}
Now solve the equation x=\frac{-10±2\sqrt{19}}{6} when ± is minus. Subtract 2\sqrt{19} from -10.
x=\frac{-\sqrt{19}-5}{3}
Divide -10-2\sqrt{19} by 6.
x=\frac{\sqrt{19}-5}{3} x=\frac{-\sqrt{19}-5}{3}
The equation is now solved.
\left(3x+2\right)\left(x+3\right)=x+4
Calculate 3x+2 to the power of 1 and get 3x+2.
3x^{2}+11x+6=x+4
Use the distributive property to multiply 3x+2 by x+3 and combine like terms.
3x^{2}+11x+6-x=4
Subtract x from both sides.
3x^{2}+10x+6=4
Combine 11x and -x to get 10x.
3x^{2}+10x=4-6
Subtract 6 from both sides.
3x^{2}+10x=-2
Subtract 6 from 4 to get -2.
\frac{3x^{2}+10x}{3}=-\frac{2}{3}
Divide both sides by 3.
x^{2}+\frac{10}{3}x=-\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=-\frac{2}{3}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=-\frac{2}{3}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{19}{9}
Add -\frac{2}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{3}\right)^{2}=\frac{19}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{19}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{\sqrt{19}}{3} x+\frac{5}{3}=-\frac{\sqrt{19}}{3}
Simplify.
x=\frac{\sqrt{19}-5}{3} x=\frac{-\sqrt{19}-5}{3}
Subtract \frac{5}{3} from both sides of the equation.