Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+6x+1=x^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
9x^{2}+6x+1-x^{2}=1
Subtract x^{2} from both sides.
8x^{2}+6x+1=1
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+6x+1-1=0
Subtract 1 from both sides.
8x^{2}+6x=0
Subtract 1 from 1 to get 0.
x\left(8x+6\right)=0
Factor out x.
x=0 x=-\frac{3}{4}
To find equation solutions, solve x=0 and 8x+6=0.
9x^{2}+6x+1=x^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
9x^{2}+6x+1-x^{2}=1
Subtract x^{2} from both sides.
8x^{2}+6x+1=1
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+6x+1-1=0
Subtract 1 from both sides.
8x^{2}+6x=0
Subtract 1 from 1 to get 0.
x=\frac{-6±\sqrt{6^{2}}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 6 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±6}{2\times 8}
Take the square root of 6^{2}.
x=\frac{-6±6}{16}
Multiply 2 times 8.
x=\frac{0}{16}
Now solve the equation x=\frac{-6±6}{16} when ± is plus. Add -6 to 6.
x=0
Divide 0 by 16.
x=-\frac{12}{16}
Now solve the equation x=\frac{-6±6}{16} when ± is minus. Subtract 6 from -6.
x=-\frac{3}{4}
Reduce the fraction \frac{-12}{16} to lowest terms by extracting and canceling out 4.
x=0 x=-\frac{3}{4}
The equation is now solved.
9x^{2}+6x+1=x^{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
9x^{2}+6x+1-x^{2}=1
Subtract x^{2} from both sides.
8x^{2}+6x+1=1
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+6x=1-1
Subtract 1 from both sides.
8x^{2}+6x=0
Subtract 1 from 1 to get 0.
\frac{8x^{2}+6x}{8}=\frac{0}{8}
Divide both sides by 8.
x^{2}+\frac{6}{8}x=\frac{0}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{3}{4}x=\frac{0}{8}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{3}{4}x=0
Divide 0 by 8.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{3}{8}\right)^{2}=\frac{9}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{3}{8} x+\frac{3}{8}=-\frac{3}{8}
Simplify.
x=0 x=-\frac{3}{4}
Subtract \frac{3}{8} from both sides of the equation.