Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\left(3x+1\right)^{1}\right)^{2}=\left(\sqrt{x^{2}+1}\right)^{2}
Square both sides of the equation.
\left(3x+1\right)^{2}=\left(\sqrt{x^{2}+1}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 1 and 2 to get 2.
9x^{2}+6x+1=\left(\sqrt{x^{2}+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+1\right)^{2}.
9x^{2}+6x+1=x^{2}+1
Calculate \sqrt{x^{2}+1} to the power of 2 and get x^{2}+1.
9x^{2}+6x+1-x^{2}=1
Subtract x^{2} from both sides.
8x^{2}+6x+1=1
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}+6x+1-1=0
Subtract 1 from both sides.
8x^{2}+6x=0
Subtract 1 from 1 to get 0.
x\left(8x+6\right)=0
Factor out x.
x=0 x=-\frac{3}{4}
To find equation solutions, solve x=0 and 8x+6=0.
\left(3\times 0+1\right)^{1}=\sqrt{0^{2}+1}
Substitute 0 for x in the equation \left(3x+1\right)^{1}=\sqrt{x^{2}+1}.
1=1
Simplify. The value x=0 satisfies the equation.
\left(3\left(-\frac{3}{4}\right)+1\right)^{1}=\sqrt{\left(-\frac{3}{4}\right)^{2}+1}
Substitute -\frac{3}{4} for x in the equation \left(3x+1\right)^{1}=\sqrt{x^{2}+1}.
-\frac{5}{4}=\frac{5}{4}
Simplify. The value x=-\frac{3}{4} does not satisfy the equation because the left and the right hand side have opposite signs.
x=0
Equation \left(3x+1\right)^{1}=\sqrt{x^{2}+1} has a unique solution.