Solve for x (complex solution)
x=\frac{2+\sqrt{5}i}{9}\approx 0.222222222+0.248451997i
x=\frac{-\sqrt{5}i+2}{9}\approx 0.222222222-0.248451997i
Graph
Share
Copied to clipboard
3^{2}x^{2}-4x+1=0
Expand \left(3x\right)^{2}.
9x^{2}-4x+1=0
Calculate 3 to the power of 2 and get 9.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -4 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9}}{2\times 9}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-36}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-4\right)±\sqrt{-20}}{2\times 9}
Add 16 to -36.
x=\frac{-\left(-4\right)±2\sqrt{5}i}{2\times 9}
Take the square root of -20.
x=\frac{4±2\sqrt{5}i}{2\times 9}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{5}i}{18}
Multiply 2 times 9.
x=\frac{4+2\sqrt{5}i}{18}
Now solve the equation x=\frac{4±2\sqrt{5}i}{18} when ± is plus. Add 4 to 2i\sqrt{5}.
x=\frac{2+\sqrt{5}i}{9}
Divide 4+2i\sqrt{5} by 18.
x=\frac{-2\sqrt{5}i+4}{18}
Now solve the equation x=\frac{4±2\sqrt{5}i}{18} when ± is minus. Subtract 2i\sqrt{5} from 4.
x=\frac{-\sqrt{5}i+2}{9}
Divide 4-2i\sqrt{5} by 18.
x=\frac{2+\sqrt{5}i}{9} x=\frac{-\sqrt{5}i+2}{9}
The equation is now solved.
3^{2}x^{2}-4x+1=0
Expand \left(3x\right)^{2}.
9x^{2}-4x+1=0
Calculate 3 to the power of 2 and get 9.
9x^{2}-4x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}-4x}{9}=-\frac{1}{9}
Divide both sides by 9.
x^{2}-\frac{4}{9}x=-\frac{1}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{4}{9}x+\left(-\frac{2}{9}\right)^{2}=-\frac{1}{9}+\left(-\frac{2}{9}\right)^{2}
Divide -\frac{4}{9}, the coefficient of the x term, by 2 to get -\frac{2}{9}. Then add the square of -\frac{2}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{9}x+\frac{4}{81}=-\frac{1}{9}+\frac{4}{81}
Square -\frac{2}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{9}x+\frac{4}{81}=-\frac{5}{81}
Add -\frac{1}{9} to \frac{4}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{9}\right)^{2}=-\frac{5}{81}
Factor x^{2}-\frac{4}{9}x+\frac{4}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{9}\right)^{2}}=\sqrt{-\frac{5}{81}}
Take the square root of both sides of the equation.
x-\frac{2}{9}=\frac{\sqrt{5}i}{9} x-\frac{2}{9}=-\frac{\sqrt{5}i}{9}
Simplify.
x=\frac{2+\sqrt{5}i}{9} x=\frac{-\sqrt{5}i+2}{9}
Add \frac{2}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}