Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

9b^{2}+24b+16-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3b+4\right)^{2}.
9b^{2}+24b-48=0
Subtract 64 from 16 to get -48.
3b^{2}+8b-16=0
Divide both sides by 3.
a+b=8 ab=3\left(-16\right)=-48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3b^{2}+ab+bb-16. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=-4 b=12
The solution is the pair that gives sum 8.
\left(3b^{2}-4b\right)+\left(12b-16\right)
Rewrite 3b^{2}+8b-16 as \left(3b^{2}-4b\right)+\left(12b-16\right).
b\left(3b-4\right)+4\left(3b-4\right)
Factor out b in the first and 4 in the second group.
\left(3b-4\right)\left(b+4\right)
Factor out common term 3b-4 by using distributive property.
b=\frac{4}{3} b=-4
To find equation solutions, solve 3b-4=0 and b+4=0.
9b^{2}+24b+16-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3b+4\right)^{2}.
9b^{2}+24b-48=0
Subtract 64 from 16 to get -48.
b=\frac{-24±\sqrt{24^{2}-4\times 9\left(-48\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 24 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-24±\sqrt{576-4\times 9\left(-48\right)}}{2\times 9}
Square 24.
b=\frac{-24±\sqrt{576-36\left(-48\right)}}{2\times 9}
Multiply -4 times 9.
b=\frac{-24±\sqrt{576+1728}}{2\times 9}
Multiply -36 times -48.
b=\frac{-24±\sqrt{2304}}{2\times 9}
Add 576 to 1728.
b=\frac{-24±48}{2\times 9}
Take the square root of 2304.
b=\frac{-24±48}{18}
Multiply 2 times 9.
b=\frac{24}{18}
Now solve the equation b=\frac{-24±48}{18} when ± is plus. Add -24 to 48.
b=\frac{4}{3}
Reduce the fraction \frac{24}{18} to lowest terms by extracting and canceling out 6.
b=-\frac{72}{18}
Now solve the equation b=\frac{-24±48}{18} when ± is minus. Subtract 48 from -24.
b=-4
Divide -72 by 18.
b=\frac{4}{3} b=-4
The equation is now solved.
9b^{2}+24b+16-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3b+4\right)^{2}.
9b^{2}+24b-48=0
Subtract 64 from 16 to get -48.
9b^{2}+24b=48
Add 48 to both sides. Anything plus zero gives itself.
\frac{9b^{2}+24b}{9}=\frac{48}{9}
Divide both sides by 9.
b^{2}+\frac{24}{9}b=\frac{48}{9}
Dividing by 9 undoes the multiplication by 9.
b^{2}+\frac{8}{3}b=\frac{48}{9}
Reduce the fraction \frac{24}{9} to lowest terms by extracting and canceling out 3.
b^{2}+\frac{8}{3}b=\frac{16}{3}
Reduce the fraction \frac{48}{9} to lowest terms by extracting and canceling out 3.
b^{2}+\frac{8}{3}b+\left(\frac{4}{3}\right)^{2}=\frac{16}{3}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}+\frac{8}{3}b+\frac{16}{9}=\frac{16}{3}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
b^{2}+\frac{8}{3}b+\frac{16}{9}=\frac{64}{9}
Add \frac{16}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b+\frac{4}{3}\right)^{2}=\frac{64}{9}
Factor b^{2}+\frac{8}{3}b+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{4}{3}\right)^{2}}=\sqrt{\frac{64}{9}}
Take the square root of both sides of the equation.
b+\frac{4}{3}=\frac{8}{3} b+\frac{4}{3}=-\frac{8}{3}
Simplify.
b=\frac{4}{3} b=-4
Subtract \frac{4}{3} from both sides of the equation.