Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(300-\frac{700\sqrt{109}}{\left(\sqrt{109}\right)^{2}}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
Rationalize the denominator of \frac{700}{\sqrt{109}} by multiplying numerator and denominator by \sqrt{109}.
\left(300-\frac{700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
The square of \sqrt{109} is 109.
\left(\frac{300\times 109}{109}-\frac{700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 300 times \frac{109}{109}.
\left(\frac{300\times 109-700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
Since \frac{300\times 109}{109} and \frac{700\sqrt{109}}{109} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{32700-700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
Do the multiplications in 300\times 109-700\sqrt{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
To raise \frac{32700-700\sqrt{109}}{109} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(650+\frac{210\sqrt{109}}{\left(\sqrt{109}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{210}{\sqrt{109}} by multiplying numerator and denominator by \sqrt{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(650+\frac{210\sqrt{109}}{109}\right)^{2}
The square of \sqrt{109} is 109.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(\frac{650\times 109}{109}+\frac{210\sqrt{109}}{109}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 650 times \frac{109}{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(\frac{650\times 109+210\sqrt{109}}{109}\right)^{2}
Since \frac{650\times 109}{109} and \frac{210\sqrt{109}}{109} have the same denominator, add them by adding their numerators.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(\frac{70850+210\sqrt{109}}{109}\right)^{2}
Do the multiplications in 650\times 109+210\sqrt{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
To raise \frac{70850+210\sqrt{109}}{109} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(32700-700\sqrt{109}\right)^{2}+\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Since \frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}} and \frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}} have the same denominator, add them by adding their numerators.
\frac{1069290000-45780000\sqrt{109}+490000\left(\sqrt{109}\right)^{2}}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(32700-700\sqrt{109}\right)^{2}.
\frac{1069290000-45780000\sqrt{109}+490000\times 109}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
The square of \sqrt{109} is 109.
\frac{1069290000-45780000\sqrt{109}+53410000}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Multiply 490000 and 109 to get 53410000.
\frac{1122700000-45780000\sqrt{109}}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Add 1069290000 and 53410000 to get 1122700000.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Calculate 109 to the power of 2 and get 11881.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5019722500+29757000\sqrt{109}+44100\left(\sqrt{109}\right)^{2}}{109^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(70850+210\sqrt{109}\right)^{2}.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5019722500+29757000\sqrt{109}+44100\times 109}{109^{2}}
The square of \sqrt{109} is 109.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5019722500+29757000\sqrt{109}+4806900}{109^{2}}
Multiply 44100 and 109 to get 4806900.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5024529400+29757000\sqrt{109}}{109^{2}}
Add 5019722500 and 4806900 to get 5024529400.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5024529400+29757000\sqrt{109}}{11881}
Calculate 109 to the power of 2 and get 11881.
\frac{1122700000-45780000\sqrt{109}+5024529400+29757000\sqrt{109}}{11881}
Since \frac{1122700000-45780000\sqrt{109}}{11881} and \frac{5024529400+29757000\sqrt{109}}{11881} have the same denominator, add them by adding their numerators.
\frac{6147229400-16023000\sqrt{109}}{11881}
Do the calculations in 1122700000-45780000\sqrt{109}+5024529400+29757000\sqrt{109}.
\left(300-\frac{700\sqrt{109}}{\left(\sqrt{109}\right)^{2}}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
Rationalize the denominator of \frac{700}{\sqrt{109}} by multiplying numerator and denominator by \sqrt{109}.
\left(300-\frac{700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
The square of \sqrt{109} is 109.
\left(\frac{300\times 109}{109}-\frac{700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 300 times \frac{109}{109}.
\left(\frac{300\times 109-700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
Since \frac{300\times 109}{109} and \frac{700\sqrt{109}}{109} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{32700-700\sqrt{109}}{109}\right)^{2}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
Do the multiplications in 300\times 109-700\sqrt{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(650+\frac{210}{\sqrt{109}}\right)^{2}
To raise \frac{32700-700\sqrt{109}}{109} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(650+\frac{210\sqrt{109}}{\left(\sqrt{109}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{210}{\sqrt{109}} by multiplying numerator and denominator by \sqrt{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(650+\frac{210\sqrt{109}}{109}\right)^{2}
The square of \sqrt{109} is 109.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(\frac{650\times 109}{109}+\frac{210\sqrt{109}}{109}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 650 times \frac{109}{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(\frac{650\times 109+210\sqrt{109}}{109}\right)^{2}
Since \frac{650\times 109}{109} and \frac{210\sqrt{109}}{109} have the same denominator, add them by adding their numerators.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\left(\frac{70850+210\sqrt{109}}{109}\right)^{2}
Do the multiplications in 650\times 109+210\sqrt{109}.
\frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
To raise \frac{70850+210\sqrt{109}}{109} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(32700-700\sqrt{109}\right)^{2}+\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Since \frac{\left(32700-700\sqrt{109}\right)^{2}}{109^{2}} and \frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}} have the same denominator, add them by adding their numerators.
\frac{1069290000-45780000\sqrt{109}+490000\left(\sqrt{109}\right)^{2}}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(32700-700\sqrt{109}\right)^{2}.
\frac{1069290000-45780000\sqrt{109}+490000\times 109}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
The square of \sqrt{109} is 109.
\frac{1069290000-45780000\sqrt{109}+53410000}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Multiply 490000 and 109 to get 53410000.
\frac{1122700000-45780000\sqrt{109}}{109^{2}}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Add 1069290000 and 53410000 to get 1122700000.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{\left(70850+210\sqrt{109}\right)^{2}}{109^{2}}
Calculate 109 to the power of 2 and get 11881.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5019722500+29757000\sqrt{109}+44100\left(\sqrt{109}\right)^{2}}{109^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(70850+210\sqrt{109}\right)^{2}.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5019722500+29757000\sqrt{109}+44100\times 109}{109^{2}}
The square of \sqrt{109} is 109.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5019722500+29757000\sqrt{109}+4806900}{109^{2}}
Multiply 44100 and 109 to get 4806900.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5024529400+29757000\sqrt{109}}{109^{2}}
Add 5019722500 and 4806900 to get 5024529400.
\frac{1122700000-45780000\sqrt{109}}{11881}+\frac{5024529400+29757000\sqrt{109}}{11881}
Calculate 109 to the power of 2 and get 11881.
\frac{1122700000-45780000\sqrt{109}+5024529400+29757000\sqrt{109}}{11881}
Since \frac{1122700000-45780000\sqrt{109}}{11881} and \frac{5024529400+29757000\sqrt{109}}{11881} have the same denominator, add them by adding their numerators.
\frac{6147229400-16023000\sqrt{109}}{11881}
Do the calculations in 1122700000-45780000\sqrt{109}+5024529400+29757000\sqrt{109}.