Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

5\left(3-x\right)^{2}=5-x^{2}
Multiply both sides of the equation by 5.
5\left(9-6x+x^{2}\right)=5-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
45-30x+5x^{2}=5-x^{2}
Use the distributive property to multiply 5 by 9-6x+x^{2}.
45-30x+5x^{2}-5=-x^{2}
Subtract 5 from both sides.
40-30x+5x^{2}=-x^{2}
Subtract 5 from 45 to get 40.
40-30x+5x^{2}+x^{2}=0
Add x^{2} to both sides.
40-30x+6x^{2}=0
Combine 5x^{2} and x^{2} to get 6x^{2}.
6x^{2}-30x+40=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 6\times 40}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -30 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 6\times 40}}{2\times 6}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-24\times 40}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-30\right)±\sqrt{900-960}}{2\times 6}
Multiply -24 times 40.
x=\frac{-\left(-30\right)±\sqrt{-60}}{2\times 6}
Add 900 to -960.
x=\frac{-\left(-30\right)±2\sqrt{15}i}{2\times 6}
Take the square root of -60.
x=\frac{30±2\sqrt{15}i}{2\times 6}
The opposite of -30 is 30.
x=\frac{30±2\sqrt{15}i}{12}
Multiply 2 times 6.
x=\frac{30+2\sqrt{15}i}{12}
Now solve the equation x=\frac{30±2\sqrt{15}i}{12} when ± is plus. Add 30 to 2i\sqrt{15}.
x=\frac{\sqrt{15}i}{6}+\frac{5}{2}
Divide 30+2i\sqrt{15} by 12.
x=\frac{-2\sqrt{15}i+30}{12}
Now solve the equation x=\frac{30±2\sqrt{15}i}{12} when ± is minus. Subtract 2i\sqrt{15} from 30.
x=-\frac{\sqrt{15}i}{6}+\frac{5}{2}
Divide 30-2i\sqrt{15} by 12.
x=\frac{\sqrt{15}i}{6}+\frac{5}{2} x=-\frac{\sqrt{15}i}{6}+\frac{5}{2}
The equation is now solved.
5\left(3-x\right)^{2}=5-x^{2}
Multiply both sides of the equation by 5.
5\left(9-6x+x^{2}\right)=5-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-x\right)^{2}.
45-30x+5x^{2}=5-x^{2}
Use the distributive property to multiply 5 by 9-6x+x^{2}.
45-30x+5x^{2}+x^{2}=5
Add x^{2} to both sides.
45-30x+6x^{2}=5
Combine 5x^{2} and x^{2} to get 6x^{2}.
-30x+6x^{2}=5-45
Subtract 45 from both sides.
-30x+6x^{2}=-40
Subtract 45 from 5 to get -40.
6x^{2}-30x=-40
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-30x}{6}=-\frac{40}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{30}{6}\right)x=-\frac{40}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-5x=-\frac{40}{6}
Divide -30 by 6.
x^{2}-5x=-\frac{20}{3}
Reduce the fraction \frac{-40}{6} to lowest terms by extracting and canceling out 2.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{20}{3}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-\frac{20}{3}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=-\frac{5}{12}
Add -\frac{20}{3} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=-\frac{5}{12}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{5}{12}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{15}i}{6} x-\frac{5}{2}=-\frac{\sqrt{15}i}{6}
Simplify.
x=\frac{\sqrt{15}i}{6}+\frac{5}{2} x=-\frac{\sqrt{15}i}{6}+\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.