Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9\left(\sqrt{5}\right)^{2}-12\sqrt{5}\sqrt{15}+4\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{5}-2\sqrt{15}\right)^{2}.
9\times 5-12\sqrt{5}\sqrt{15}+4\left(\sqrt{15}\right)^{2}
The square of \sqrt{5} is 5.
45-12\sqrt{5}\sqrt{15}+4\left(\sqrt{15}\right)^{2}
Multiply 9 and 5 to get 45.
45-12\sqrt{5}\sqrt{5}\sqrt{3}+4\left(\sqrt{15}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
45-12\times 5\sqrt{3}+4\left(\sqrt{15}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
45-60\sqrt{3}+4\left(\sqrt{15}\right)^{2}
Multiply -12 and 5 to get -60.
45-60\sqrt{3}+4\times 15
The square of \sqrt{15} is 15.
45-60\sqrt{3}+60
Multiply 4 and 15 to get 60.
105-60\sqrt{3}
Add 45 and 60 to get 105.
9\left(\sqrt{5}\right)^{2}-12\sqrt{5}\sqrt{15}+4\left(\sqrt{15}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{5}-2\sqrt{15}\right)^{2}.
9\times 5-12\sqrt{5}\sqrt{15}+4\left(\sqrt{15}\right)^{2}
The square of \sqrt{5} is 5.
45-12\sqrt{5}\sqrt{15}+4\left(\sqrt{15}\right)^{2}
Multiply 9 and 5 to get 45.
45-12\sqrt{5}\sqrt{5}\sqrt{3}+4\left(\sqrt{15}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
45-12\times 5\sqrt{3}+4\left(\sqrt{15}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
45-60\sqrt{3}+4\left(\sqrt{15}\right)^{2}
Multiply -12 and 5 to get -60.
45-60\sqrt{3}+4\times 15
The square of \sqrt{15} is 15.
45-60\sqrt{3}+60
Multiply 4 and 15 to get 60.
105-60\sqrt{3}
Add 45 and 60 to get 105.