Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

9\left(\sqrt{2}\right)^{2}-6\sqrt{2}\sqrt{10}+\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-\sqrt{10}\right)^{2}.
9\times 2-6\sqrt{2}\sqrt{10}+\left(\sqrt{10}\right)^{2}
The square of \sqrt{2} is 2.
18-6\sqrt{2}\sqrt{10}+\left(\sqrt{10}\right)^{2}
Multiply 9 and 2 to get 18.
18-6\sqrt{2}\sqrt{2}\sqrt{5}+\left(\sqrt{10}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
18-6\times 2\sqrt{5}+\left(\sqrt{10}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
18-12\sqrt{5}+\left(\sqrt{10}\right)^{2}
Multiply -6 and 2 to get -12.
18-12\sqrt{5}+10
The square of \sqrt{10} is 10.
28-12\sqrt{5}
Add 18 and 10 to get 28.
9\left(\sqrt{2}\right)^{2}-6\sqrt{2}\sqrt{10}+\left(\sqrt{10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-\sqrt{10}\right)^{2}.
9\times 2-6\sqrt{2}\sqrt{10}+\left(\sqrt{10}\right)^{2}
The square of \sqrt{2} is 2.
18-6\sqrt{2}\sqrt{10}+\left(\sqrt{10}\right)^{2}
Multiply 9 and 2 to get 18.
18-6\sqrt{2}\sqrt{2}\sqrt{5}+\left(\sqrt{10}\right)^{2}
Factor 10=2\times 5. Rewrite the square root of the product \sqrt{2\times 5} as the product of square roots \sqrt{2}\sqrt{5}.
18-6\times 2\sqrt{5}+\left(\sqrt{10}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
18-12\sqrt{5}+\left(\sqrt{10}\right)^{2}
Multiply -6 and 2 to get -12.
18-12\sqrt{5}+10
The square of \sqrt{10} is 10.
28-12\sqrt{5}
Add 18 and 10 to get 28.