Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x+9-\left(x-5\right)^{2}=-23
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9-\left(x^{2}-10x+25\right)=-23
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}-12x+9-x^{2}+10x-25=-23
To find the opposite of x^{2}-10x+25, find the opposite of each term.
3x^{2}-12x+9+10x-25=-23
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-2x+9-25=-23
Combine -12x and 10x to get -2x.
3x^{2}-2x-16=-23
Subtract 25 from 9 to get -16.
3x^{2}-2x-16+23=0
Add 23 to both sides.
3x^{2}-2x+7=0
Add -16 and 23 to get 7.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 7}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\times 7}}{2\times 3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\times 7}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{4-84}}{2\times 3}
Multiply -12 times 7.
x=\frac{-\left(-2\right)±\sqrt{-80}}{2\times 3}
Add 4 to -84.
x=\frac{-\left(-2\right)±4\sqrt{5}i}{2\times 3}
Take the square root of -80.
x=\frac{2±4\sqrt{5}i}{2\times 3}
The opposite of -2 is 2.
x=\frac{2±4\sqrt{5}i}{6}
Multiply 2 times 3.
x=\frac{2+4\sqrt{5}i}{6}
Now solve the equation x=\frac{2±4\sqrt{5}i}{6} when ± is plus. Add 2 to 4i\sqrt{5}.
x=\frac{1+2\sqrt{5}i}{3}
Divide 2+4i\sqrt{5} by 6.
x=\frac{-4\sqrt{5}i+2}{6}
Now solve the equation x=\frac{2±4\sqrt{5}i}{6} when ± is minus. Subtract 4i\sqrt{5} from 2.
x=\frac{-2\sqrt{5}i+1}{3}
Divide 2-4i\sqrt{5} by 6.
x=\frac{1+2\sqrt{5}i}{3} x=\frac{-2\sqrt{5}i+1}{3}
The equation is now solved.
4x^{2}-12x+9-\left(x-5\right)^{2}=-23
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9-\left(x^{2}-10x+25\right)=-23
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-5\right)^{2}.
4x^{2}-12x+9-x^{2}+10x-25=-23
To find the opposite of x^{2}-10x+25, find the opposite of each term.
3x^{2}-12x+9+10x-25=-23
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-2x+9-25=-23
Combine -12x and 10x to get -2x.
3x^{2}-2x-16=-23
Subtract 25 from 9 to get -16.
3x^{2}-2x=-23+16
Add 16 to both sides.
3x^{2}-2x=-7
Add -23 and 16 to get -7.
\frac{3x^{2}-2x}{3}=-\frac{7}{3}
Divide both sides by 3.
x^{2}-\frac{2}{3}x=-\frac{7}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{7}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{7}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{20}{9}
Add -\frac{7}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{20}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{20}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{2\sqrt{5}i}{3} x-\frac{1}{3}=-\frac{2\sqrt{5}i}{3}
Simplify.
x=\frac{1+2\sqrt{5}i}{3} x=\frac{-2\sqrt{5}i+1}{3}
Add \frac{1}{3} to both sides of the equation.