Solve for x
x=2
x=1
Graph
Share
Copied to clipboard
4x^{2}-12x+9=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9-1=0
Subtract 1 from both sides.
4x^{2}-12x+8=0
Subtract 1 from 9 to get 8.
x^{2}-3x+2=0
Divide both sides by 4.
a+b=-3 ab=1\times 2=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(-x+2\right)
Rewrite x^{2}-3x+2 as \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
Factor out x in the first and -1 in the second group.
\left(x-2\right)\left(x-1\right)
Factor out common term x-2 by using distributive property.
x=2 x=1
To find equation solutions, solve x-2=0 and x-1=0.
4x^{2}-12x+9=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9-1=0
Subtract 1 from both sides.
4x^{2}-12x+8=0
Subtract 1 from 9 to get 8.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 8}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 8}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 8}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2\times 4}
Multiply -16 times 8.
x=\frac{-\left(-12\right)±\sqrt{16}}{2\times 4}
Add 144 to -128.
x=\frac{-\left(-12\right)±4}{2\times 4}
Take the square root of 16.
x=\frac{12±4}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±4}{8}
Multiply 2 times 4.
x=\frac{16}{8}
Now solve the equation x=\frac{12±4}{8} when ± is plus. Add 12 to 4.
x=2
Divide 16 by 8.
x=\frac{8}{8}
Now solve the equation x=\frac{12±4}{8} when ± is minus. Subtract 4 from 12.
x=1
Divide 8 by 8.
x=2 x=1
The equation is now solved.
4x^{2}-12x+9=1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x=1-9
Subtract 9 from both sides.
4x^{2}-12x=-8
Subtract 9 from 1 to get -8.
\frac{4x^{2}-12x}{4}=-\frac{8}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=-\frac{8}{4}
Divide -12 by 4.
x^{2}-3x=-2
Divide -8 by 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{1}{2} x-\frac{3}{2}=-\frac{1}{2}
Simplify.
x=2 x=1
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}