Solve for x
x=\frac{\sqrt{34}-2}{5}\approx 0.766190379
x=\frac{-\sqrt{34}-2}{5}\approx -1.566190379
Graph
Share
Copied to clipboard
4x^{2}-4x+1+5=9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+6=9x^{2}
Add 1 and 5 to get 6.
4x^{2}-4x+6-9x^{2}=0
Subtract 9x^{2} from both sides.
-5x^{2}-4x+6=0
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)\times 6}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -4 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)\times 6}}{2\left(-5\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+20\times 6}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-4\right)±\sqrt{16+120}}{2\left(-5\right)}
Multiply 20 times 6.
x=\frac{-\left(-4\right)±\sqrt{136}}{2\left(-5\right)}
Add 16 to 120.
x=\frac{-\left(-4\right)±2\sqrt{34}}{2\left(-5\right)}
Take the square root of 136.
x=\frac{4±2\sqrt{34}}{2\left(-5\right)}
The opposite of -4 is 4.
x=\frac{4±2\sqrt{34}}{-10}
Multiply 2 times -5.
x=\frac{2\sqrt{34}+4}{-10}
Now solve the equation x=\frac{4±2\sqrt{34}}{-10} when ± is plus. Add 4 to 2\sqrt{34}.
x=\frac{-\sqrt{34}-2}{5}
Divide 4+2\sqrt{34} by -10.
x=\frac{4-2\sqrt{34}}{-10}
Now solve the equation x=\frac{4±2\sqrt{34}}{-10} when ± is minus. Subtract 2\sqrt{34} from 4.
x=\frac{\sqrt{34}-2}{5}
Divide 4-2\sqrt{34} by -10.
x=\frac{-\sqrt{34}-2}{5} x=\frac{\sqrt{34}-2}{5}
The equation is now solved.
4x^{2}-4x+1+5=9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
4x^{2}-4x+6=9x^{2}
Add 1 and 5 to get 6.
4x^{2}-4x+6-9x^{2}=0
Subtract 9x^{2} from both sides.
-5x^{2}-4x+6=0
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}-4x=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\frac{-5x^{2}-4x}{-5}=-\frac{6}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{4}{-5}\right)x=-\frac{6}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+\frac{4}{5}x=-\frac{6}{-5}
Divide -4 by -5.
x^{2}+\frac{4}{5}x=\frac{6}{5}
Divide -6 by -5.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=\frac{6}{5}+\left(\frac{2}{5}\right)^{2}
Divide \frac{4}{5}, the coefficient of the x term, by 2 to get \frac{2}{5}. Then add the square of \frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{6}{5}+\frac{4}{25}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{34}{25}
Add \frac{6}{5} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{5}\right)^{2}=\frac{34}{25}
Factor x^{2}+\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{\frac{34}{25}}
Take the square root of both sides of the equation.
x+\frac{2}{5}=\frac{\sqrt{34}}{5} x+\frac{2}{5}=-\frac{\sqrt{34}}{5}
Simplify.
x=\frac{\sqrt{34}-2}{5} x=\frac{-\sqrt{34}-2}{5}
Subtract \frac{2}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}