Solve for x
x=5
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
4x^{2}+12x+9-\left(3x-2\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9-\left(9x^{2}-12x+4\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
4x^{2}+12x+9-9x^{2}+12x-4=0
To find the opposite of 9x^{2}-12x+4, find the opposite of each term.
-5x^{2}+12x+9+12x-4=0
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+24x+9-4=0
Combine 12x and 12x to get 24x.
-5x^{2}+24x+5=0
Subtract 4 from 9 to get 5.
a+b=24 ab=-5\times 5=-25
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -5x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,25 -5,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -25.
-1+25=24 -5+5=0
Calculate the sum for each pair.
a=25 b=-1
The solution is the pair that gives sum 24.
\left(-5x^{2}+25x\right)+\left(-x+5\right)
Rewrite -5x^{2}+24x+5 as \left(-5x^{2}+25x\right)+\left(-x+5\right).
5x\left(-x+5\right)-x+5
Factor out 5x in -5x^{2}+25x.
\left(-x+5\right)\left(5x+1\right)
Factor out common term -x+5 by using distributive property.
x=5 x=-\frac{1}{5}
To find equation solutions, solve -x+5=0 and 5x+1=0.
4x^{2}+12x+9-\left(3x-2\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9-\left(9x^{2}-12x+4\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
4x^{2}+12x+9-9x^{2}+12x-4=0
To find the opposite of 9x^{2}-12x+4, find the opposite of each term.
-5x^{2}+12x+9+12x-4=0
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+24x+9-4=0
Combine 12x and 12x to get 24x.
-5x^{2}+24x+5=0
Subtract 4 from 9 to get 5.
x=\frac{-24±\sqrt{24^{2}-4\left(-5\right)\times 5}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 24 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-5\right)\times 5}}{2\left(-5\right)}
Square 24.
x=\frac{-24±\sqrt{576+20\times 5}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-24±\sqrt{576+100}}{2\left(-5\right)}
Multiply 20 times 5.
x=\frac{-24±\sqrt{676}}{2\left(-5\right)}
Add 576 to 100.
x=\frac{-24±26}{2\left(-5\right)}
Take the square root of 676.
x=\frac{-24±26}{-10}
Multiply 2 times -5.
x=\frac{2}{-10}
Now solve the equation x=\frac{-24±26}{-10} when ± is plus. Add -24 to 26.
x=-\frac{1}{5}
Reduce the fraction \frac{2}{-10} to lowest terms by extracting and canceling out 2.
x=-\frac{50}{-10}
Now solve the equation x=\frac{-24±26}{-10} when ± is minus. Subtract 26 from -24.
x=5
Divide -50 by -10.
x=-\frac{1}{5} x=5
The equation is now solved.
4x^{2}+12x+9-\left(3x-2\right)^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9-\left(9x^{2}-12x+4\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
4x^{2}+12x+9-9x^{2}+12x-4=0
To find the opposite of 9x^{2}-12x+4, find the opposite of each term.
-5x^{2}+12x+9+12x-4=0
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+24x+9-4=0
Combine 12x and 12x to get 24x.
-5x^{2}+24x+5=0
Subtract 4 from 9 to get 5.
-5x^{2}+24x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\frac{-5x^{2}+24x}{-5}=-\frac{5}{-5}
Divide both sides by -5.
x^{2}+\frac{24}{-5}x=-\frac{5}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-\frac{24}{5}x=-\frac{5}{-5}
Divide 24 by -5.
x^{2}-\frac{24}{5}x=1
Divide -5 by -5.
x^{2}-\frac{24}{5}x+\left(-\frac{12}{5}\right)^{2}=1+\left(-\frac{12}{5}\right)^{2}
Divide -\frac{24}{5}, the coefficient of the x term, by 2 to get -\frac{12}{5}. Then add the square of -\frac{12}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{24}{5}x+\frac{144}{25}=1+\frac{144}{25}
Square -\frac{12}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{24}{5}x+\frac{144}{25}=\frac{169}{25}
Add 1 to \frac{144}{25}.
\left(x-\frac{12}{5}\right)^{2}=\frac{169}{25}
Factor x^{2}-\frac{24}{5}x+\frac{144}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{12}{5}\right)^{2}}=\sqrt{\frac{169}{25}}
Take the square root of both sides of the equation.
x-\frac{12}{5}=\frac{13}{5} x-\frac{12}{5}=-\frac{13}{5}
Simplify.
x=5 x=-\frac{1}{5}
Add \frac{12}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}