Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}+12x+9=x^{2}+\left(x+27-4x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=x^{2}+\left(-3x+27\right)^{2}
Combine x and -4x to get -3x.
4x^{2}+12x+9=x^{2}+9x^{2}-162x+729
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3x+27\right)^{2}.
4x^{2}+12x+9=10x^{2}-162x+729
Combine x^{2} and 9x^{2} to get 10x^{2}.
4x^{2}+12x+9-10x^{2}=-162x+729
Subtract 10x^{2} from both sides.
-6x^{2}+12x+9=-162x+729
Combine 4x^{2} and -10x^{2} to get -6x^{2}.
-6x^{2}+12x+9+162x=729
Add 162x to both sides.
-6x^{2}+174x+9=729
Combine 12x and 162x to get 174x.
-6x^{2}+174x+9-729=0
Subtract 729 from both sides.
-6x^{2}+174x-720=0
Subtract 729 from 9 to get -720.
x=\frac{-174±\sqrt{174^{2}-4\left(-6\right)\left(-720\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 174 for b, and -720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-174±\sqrt{30276-4\left(-6\right)\left(-720\right)}}{2\left(-6\right)}
Square 174.
x=\frac{-174±\sqrt{30276+24\left(-720\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-174±\sqrt{30276-17280}}{2\left(-6\right)}
Multiply 24 times -720.
x=\frac{-174±\sqrt{12996}}{2\left(-6\right)}
Add 30276 to -17280.
x=\frac{-174±114}{2\left(-6\right)}
Take the square root of 12996.
x=\frac{-174±114}{-12}
Multiply 2 times -6.
x=-\frac{60}{-12}
Now solve the equation x=\frac{-174±114}{-12} when ± is plus. Add -174 to 114.
x=5
Divide -60 by -12.
x=-\frac{288}{-12}
Now solve the equation x=\frac{-174±114}{-12} when ± is minus. Subtract 114 from -174.
x=24
Divide -288 by -12.
x=5 x=24
The equation is now solved.
4x^{2}+12x+9=x^{2}+\left(x+27-4x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
4x^{2}+12x+9=x^{2}+\left(-3x+27\right)^{2}
Combine x and -4x to get -3x.
4x^{2}+12x+9=x^{2}+9x^{2}-162x+729
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3x+27\right)^{2}.
4x^{2}+12x+9=10x^{2}-162x+729
Combine x^{2} and 9x^{2} to get 10x^{2}.
4x^{2}+12x+9-10x^{2}=-162x+729
Subtract 10x^{2} from both sides.
-6x^{2}+12x+9=-162x+729
Combine 4x^{2} and -10x^{2} to get -6x^{2}.
-6x^{2}+12x+9+162x=729
Add 162x to both sides.
-6x^{2}+174x+9=729
Combine 12x and 162x to get 174x.
-6x^{2}+174x=729-9
Subtract 9 from both sides.
-6x^{2}+174x=720
Subtract 9 from 729 to get 720.
\frac{-6x^{2}+174x}{-6}=\frac{720}{-6}
Divide both sides by -6.
x^{2}+\frac{174}{-6}x=\frac{720}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-29x=\frac{720}{-6}
Divide 174 by -6.
x^{2}-29x=-120
Divide 720 by -6.
x^{2}-29x+\left(-\frac{29}{2}\right)^{2}=-120+\left(-\frac{29}{2}\right)^{2}
Divide -29, the coefficient of the x term, by 2 to get -\frac{29}{2}. Then add the square of -\frac{29}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-29x+\frac{841}{4}=-120+\frac{841}{4}
Square -\frac{29}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-29x+\frac{841}{4}=\frac{361}{4}
Add -120 to \frac{841}{4}.
\left(x-\frac{29}{2}\right)^{2}=\frac{361}{4}
Factor x^{2}-29x+\frac{841}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{29}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
Take the square root of both sides of the equation.
x-\frac{29}{2}=\frac{19}{2} x-\frac{29}{2}=-\frac{19}{2}
Simplify.
x=24 x=5
Add \frac{29}{2} to both sides of the equation.