Solve for x
x>\frac{3}{4}
Graph
Share
Copied to clipboard
4x^{2}+4x+1-4\times 1\left(x^{2}+1\right)>0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1-4\left(x^{2}+1\right)>0
Multiply 4 and 1 to get 4.
4x^{2}+4x+1-4x^{2}-4>0
Use the distributive property to multiply -4 by x^{2}+1.
4x+1-4>0
Combine 4x^{2} and -4x^{2} to get 0.
4x-3>0
Subtract 4 from 1 to get -3.
4x>3
Add 3 to both sides. Anything plus zero gives itself.
x>\frac{3}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}