Solve for x
x=-5
x=4
Graph
Share
Copied to clipboard
4x^{2}+4x+1+\left(2x-1\right)^{2}+\left(2x+3\right)^{2}=251
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1+4x^{2}-4x+1+\left(2x+3\right)^{2}=251
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
8x^{2}+4x+1-4x+1+\left(2x+3\right)^{2}=251
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+1+1+\left(2x+3\right)^{2}=251
Combine 4x and -4x to get 0.
8x^{2}+2+\left(2x+3\right)^{2}=251
Add 1 and 1 to get 2.
8x^{2}+2+4x^{2}+12x+9=251
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
12x^{2}+2+12x+9=251
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}+11+12x=251
Add 2 and 9 to get 11.
12x^{2}+11+12x-251=0
Subtract 251 from both sides.
12x^{2}-240+12x=0
Subtract 251 from 11 to get -240.
x^{2}-20+x=0
Divide both sides by 12.
x^{2}+x-20=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=1\left(-20\right)=-20
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-20. To find a and b, set up a system to be solved.
-1,20 -2,10 -4,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -20.
-1+20=19 -2+10=8 -4+5=1
Calculate the sum for each pair.
a=-4 b=5
The solution is the pair that gives sum 1.
\left(x^{2}-4x\right)+\left(5x-20\right)
Rewrite x^{2}+x-20 as \left(x^{2}-4x\right)+\left(5x-20\right).
x\left(x-4\right)+5\left(x-4\right)
Factor out x in the first and 5 in the second group.
\left(x-4\right)\left(x+5\right)
Factor out common term x-4 by using distributive property.
x=4 x=-5
To find equation solutions, solve x-4=0 and x+5=0.
4x^{2}+4x+1+\left(2x-1\right)^{2}+\left(2x+3\right)^{2}=251
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1+4x^{2}-4x+1+\left(2x+3\right)^{2}=251
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
8x^{2}+4x+1-4x+1+\left(2x+3\right)^{2}=251
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+1+1+\left(2x+3\right)^{2}=251
Combine 4x and -4x to get 0.
8x^{2}+2+\left(2x+3\right)^{2}=251
Add 1 and 1 to get 2.
8x^{2}+2+4x^{2}+12x+9=251
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
12x^{2}+2+12x+9=251
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}+11+12x=251
Add 2 and 9 to get 11.
12x^{2}+11+12x-251=0
Subtract 251 from both sides.
12x^{2}-240+12x=0
Subtract 251 from 11 to get -240.
12x^{2}+12x-240=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 12\left(-240\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 12 for b, and -240 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 12\left(-240\right)}}{2\times 12}
Square 12.
x=\frac{-12±\sqrt{144-48\left(-240\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-12±\sqrt{144+11520}}{2\times 12}
Multiply -48 times -240.
x=\frac{-12±\sqrt{11664}}{2\times 12}
Add 144 to 11520.
x=\frac{-12±108}{2\times 12}
Take the square root of 11664.
x=\frac{-12±108}{24}
Multiply 2 times 12.
x=\frac{96}{24}
Now solve the equation x=\frac{-12±108}{24} when ± is plus. Add -12 to 108.
x=4
Divide 96 by 24.
x=-\frac{120}{24}
Now solve the equation x=\frac{-12±108}{24} when ± is minus. Subtract 108 from -12.
x=-5
Divide -120 by 24.
x=4 x=-5
The equation is now solved.
4x^{2}+4x+1+\left(2x-1\right)^{2}+\left(2x+3\right)^{2}=251
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+1\right)^{2}.
4x^{2}+4x+1+4x^{2}-4x+1+\left(2x+3\right)^{2}=251
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
8x^{2}+4x+1-4x+1+\left(2x+3\right)^{2}=251
Combine 4x^{2} and 4x^{2} to get 8x^{2}.
8x^{2}+1+1+\left(2x+3\right)^{2}=251
Combine 4x and -4x to get 0.
8x^{2}+2+\left(2x+3\right)^{2}=251
Add 1 and 1 to get 2.
8x^{2}+2+4x^{2}+12x+9=251
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+3\right)^{2}.
12x^{2}+2+12x+9=251
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}+11+12x=251
Add 2 and 9 to get 11.
12x^{2}+12x=251-11
Subtract 11 from both sides.
12x^{2}+12x=240
Subtract 11 from 251 to get 240.
\frac{12x^{2}+12x}{12}=\frac{240}{12}
Divide both sides by 12.
x^{2}+\frac{12}{12}x=\frac{240}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+x=\frac{240}{12}
Divide 12 by 12.
x^{2}+x=20
Divide 240 by 12.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=20+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=20+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{81}{4}
Add 20 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{9}{2} x+\frac{1}{2}=-\frac{9}{2}
Simplify.
x=4 x=-5
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}