Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2^{2}x^{2}-14x+32=0
Expand \left(2x\right)^{2}.
4x^{2}-14x+32=0
Calculate 2 to the power of 2 and get 4.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\times 32}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -14 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\times 32}}{2\times 4}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-16\times 32}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-14\right)±\sqrt{196-512}}{2\times 4}
Multiply -16 times 32.
x=\frac{-\left(-14\right)±\sqrt{-316}}{2\times 4}
Add 196 to -512.
x=\frac{-\left(-14\right)±2\sqrt{79}i}{2\times 4}
Take the square root of -316.
x=\frac{14±2\sqrt{79}i}{2\times 4}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{79}i}{8}
Multiply 2 times 4.
x=\frac{14+2\sqrt{79}i}{8}
Now solve the equation x=\frac{14±2\sqrt{79}i}{8} when ± is plus. Add 14 to 2i\sqrt{79}.
x=\frac{7+\sqrt{79}i}{4}
Divide 14+2i\sqrt{79} by 8.
x=\frac{-2\sqrt{79}i+14}{8}
Now solve the equation x=\frac{14±2\sqrt{79}i}{8} when ± is minus. Subtract 2i\sqrt{79} from 14.
x=\frac{-\sqrt{79}i+7}{4}
Divide 14-2i\sqrt{79} by 8.
x=\frac{7+\sqrt{79}i}{4} x=\frac{-\sqrt{79}i+7}{4}
The equation is now solved.
2^{2}x^{2}-14x+32=0
Expand \left(2x\right)^{2}.
4x^{2}-14x+32=0
Calculate 2 to the power of 2 and get 4.
4x^{2}-14x=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
\frac{4x^{2}-14x}{4}=-\frac{32}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{14}{4}\right)x=-\frac{32}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{7}{2}x=-\frac{32}{4}
Reduce the fraction \frac{-14}{4} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{2}x=-8
Divide -32 by 4.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-8+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-8+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{79}{16}
Add -8 to \frac{49}{16}.
\left(x-\frac{7}{4}\right)^{2}=-\frac{79}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{-\frac{79}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{79}i}{4} x-\frac{7}{4}=-\frac{\sqrt{79}i}{4}
Simplify.
x=\frac{7+\sqrt{79}i}{4} x=\frac{-\sqrt{79}i+7}{4}
Add \frac{7}{4} to both sides of the equation.