Evaluate
327600-3600\sqrt{3}\approx 321364.617092752
Expand
327600-3600\sqrt{3}
Share
Copied to clipboard
73984\left(\sqrt{3}\right)^{2}+48960\sqrt{3}+8100+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(272\sqrt{3}+90\right)^{2}.
73984\times 3+48960\sqrt{3}+8100+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
221952+48960\sqrt{3}+8100+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
Multiply 73984 and 3 to get 221952.
230052+48960\sqrt{3}+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
Add 221952 and 8100 to get 230052.
230052+48960\sqrt{3}+21316\left(\sqrt{3}\right)^{2}-52560\sqrt{3}+32400+\left(-20\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(146\sqrt{3}-180\right)^{2}.
230052+48960\sqrt{3}+21316\times 3-52560\sqrt{3}+32400+\left(-20\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
230052+48960\sqrt{3}+63948-52560\sqrt{3}+32400+\left(-20\sqrt{3}\right)^{2}
Multiply 21316 and 3 to get 63948.
230052+48960\sqrt{3}+96348-52560\sqrt{3}+\left(-20\sqrt{3}\right)^{2}
Add 63948 and 32400 to get 96348.
326400+48960\sqrt{3}-52560\sqrt{3}+\left(-20\sqrt{3}\right)^{2}
Add 230052 and 96348 to get 326400.
326400-3600\sqrt{3}+\left(-20\sqrt{3}\right)^{2}
Combine 48960\sqrt{3} and -52560\sqrt{3} to get -3600\sqrt{3}.
326400-3600\sqrt{3}+\left(-20\right)^{2}\left(\sqrt{3}\right)^{2}
Expand \left(-20\sqrt{3}\right)^{2}.
326400-3600\sqrt{3}+400\left(\sqrt{3}\right)^{2}
Calculate -20 to the power of 2 and get 400.
326400-3600\sqrt{3}+400\times 3
The square of \sqrt{3} is 3.
326400-3600\sqrt{3}+1200
Multiply 400 and 3 to get 1200.
327600-3600\sqrt{3}
Add 326400 and 1200 to get 327600.
73984\left(\sqrt{3}\right)^{2}+48960\sqrt{3}+8100+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(272\sqrt{3}+90\right)^{2}.
73984\times 3+48960\sqrt{3}+8100+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
221952+48960\sqrt{3}+8100+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
Multiply 73984 and 3 to get 221952.
230052+48960\sqrt{3}+\left(146\sqrt{3}-180\right)^{2}+\left(-20\sqrt{3}\right)^{2}
Add 221952 and 8100 to get 230052.
230052+48960\sqrt{3}+21316\left(\sqrt{3}\right)^{2}-52560\sqrt{3}+32400+\left(-20\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(146\sqrt{3}-180\right)^{2}.
230052+48960\sqrt{3}+21316\times 3-52560\sqrt{3}+32400+\left(-20\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
230052+48960\sqrt{3}+63948-52560\sqrt{3}+32400+\left(-20\sqrt{3}\right)^{2}
Multiply 21316 and 3 to get 63948.
230052+48960\sqrt{3}+96348-52560\sqrt{3}+\left(-20\sqrt{3}\right)^{2}
Add 63948 and 32400 to get 96348.
326400+48960\sqrt{3}-52560\sqrt{3}+\left(-20\sqrt{3}\right)^{2}
Add 230052 and 96348 to get 326400.
326400-3600\sqrt{3}+\left(-20\sqrt{3}\right)^{2}
Combine 48960\sqrt{3} and -52560\sqrt{3} to get -3600\sqrt{3}.
326400-3600\sqrt{3}+\left(-20\right)^{2}\left(\sqrt{3}\right)^{2}
Expand \left(-20\sqrt{3}\right)^{2}.
326400-3600\sqrt{3}+400\left(\sqrt{3}\right)^{2}
Calculate -20 to the power of 2 and get 400.
326400-3600\sqrt{3}+400\times 3
The square of \sqrt{3} is 3.
326400-3600\sqrt{3}+1200
Multiply 400 and 3 to get 1200.
327600-3600\sqrt{3}
Add 326400 and 1200 to get 327600.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}