Solve for x
x = \frac{3 \sqrt{2524490}}{125} \approx 38.132744984
x = -\frac{3 \sqrt{2524490}}{125} \approx -38.132744984
Graph
Share
Copied to clipboard
27^{2}\left(\sqrt{2}\right)^{2}-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
Expand \left(27\sqrt{2}\right)^{2}.
729\left(\sqrt{2}\right)^{2}-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
Calculate 27 to the power of 2 and get 729.
729\times 2-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
The square of \sqrt{2} is 2.
1458-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
Multiply 729 and 2 to get 1458.
1458-\frac{\left(78\sqrt{10}\right)^{2}}{125^{2}}=x^{2}
To raise \frac{78\sqrt{10}}{125} to a power, raise both numerator and denominator to the power and then divide.
1458-\frac{78^{2}\left(\sqrt{10}\right)^{2}}{125^{2}}=x^{2}
Expand \left(78\sqrt{10}\right)^{2}.
1458-\frac{6084\left(\sqrt{10}\right)^{2}}{125^{2}}=x^{2}
Calculate 78 to the power of 2 and get 6084.
1458-\frac{6084\times 10}{125^{2}}=x^{2}
The square of \sqrt{10} is 10.
1458-\frac{60840}{125^{2}}=x^{2}
Multiply 6084 and 10 to get 60840.
1458-\frac{60840}{15625}=x^{2}
Calculate 125 to the power of 2 and get 15625.
1458-\frac{12168}{3125}=x^{2}
Reduce the fraction \frac{60840}{15625} to lowest terms by extracting and canceling out 5.
\frac{4544082}{3125}=x^{2}
Subtract \frac{12168}{3125} from 1458 to get \frac{4544082}{3125}.
x^{2}=\frac{4544082}{3125}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3\sqrt{2524490}}{125} x=-\frac{3\sqrt{2524490}}{125}
Take the square root of both sides of the equation.
27^{2}\left(\sqrt{2}\right)^{2}-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
Expand \left(27\sqrt{2}\right)^{2}.
729\left(\sqrt{2}\right)^{2}-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
Calculate 27 to the power of 2 and get 729.
729\times 2-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
The square of \sqrt{2} is 2.
1458-\left(\frac{78\sqrt{10}}{125}\right)^{2}=x^{2}
Multiply 729 and 2 to get 1458.
1458-\frac{\left(78\sqrt{10}\right)^{2}}{125^{2}}=x^{2}
To raise \frac{78\sqrt{10}}{125} to a power, raise both numerator and denominator to the power and then divide.
1458-\frac{78^{2}\left(\sqrt{10}\right)^{2}}{125^{2}}=x^{2}
Expand \left(78\sqrt{10}\right)^{2}.
1458-\frac{6084\left(\sqrt{10}\right)^{2}}{125^{2}}=x^{2}
Calculate 78 to the power of 2 and get 6084.
1458-\frac{6084\times 10}{125^{2}}=x^{2}
The square of \sqrt{10} is 10.
1458-\frac{60840}{125^{2}}=x^{2}
Multiply 6084 and 10 to get 60840.
1458-\frac{60840}{15625}=x^{2}
Calculate 125 to the power of 2 and get 15625.
1458-\frac{12168}{3125}=x^{2}
Reduce the fraction \frac{60840}{15625} to lowest terms by extracting and canceling out 5.
\frac{4544082}{3125}=x^{2}
Subtract \frac{12168}{3125} from 1458 to get \frac{4544082}{3125}.
x^{2}=\frac{4544082}{3125}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{4544082}{3125}=0
Subtract \frac{4544082}{3125} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{4544082}{3125}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{4544082}{3125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{4544082}{3125}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{18176328}{3125}}}{2}
Multiply -4 times -\frac{4544082}{3125}.
x=\frac{0±\frac{6\sqrt{2524490}}{125}}{2}
Take the square root of \frac{18176328}{3125}.
x=\frac{3\sqrt{2524490}}{125}
Now solve the equation x=\frac{0±\frac{6\sqrt{2524490}}{125}}{2} when ± is plus.
x=-\frac{3\sqrt{2524490}}{125}
Now solve the equation x=\frac{0±\frac{6\sqrt{2524490}}{125}}{2} when ± is minus.
x=\frac{3\sqrt{2524490}}{125} x=-\frac{3\sqrt{2524490}}{125}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}